Skip to main content
Log in

All-Dielectric Metasurface-Enabled Near-Infrared Switching Based on Ge2Sb2Te5 Phase-Change Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 14 May 2020

This article has been updated

Abstract

A metasurface for use in multiscale applications in the near-infrared (NIR) range is proposed herein. A detailed study is carried out on a polarization-insensitive, single-layered, reconfigurable swastika-like metasurface for NIR switching. Using germanium antimony telluride (Ge2Sb2Te5) as a phase-change material, the metasurface works as a NIR switch in the wavelength range from 1.8 μm and 2.2 μm. The metasurface consists of a patterned Ge2Sb2Te5 thin film on a glass substrate, making it an all-dielectric metastructure. A high switching contrast ratio, i.e., ratio of maximum to minimum transmission, of 150 was obtained. Light with different polarizations had no effect on the switching behavior of the metasurface, making it a potential candidate for the development of advanced, tunable, and integrated photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 May 2020

    In the original article Mirgender Kumar���s first name is spelled wrong.

References

  1. H.-H. Hsiao, C.H. Chu, and D.P. Tsai, Small Methods 1, 1600064 (2017).

    Article  Google Scholar 

  2. J. He and Y. Zhang, J. Phys. D Appl. Phys. 50, 464004 (2017).

    Article  Google Scholar 

  3. A. Li, S. Singh, and D. Sievenpiper, Nanophotonics 7, 989 (2018).

    Article  Google Scholar 

  4. Z. Wu, Y. Ra’Di, and A. Grbic, Phys. Rev. X 9, 1 (2019).

    Google Scholar 

  5. S. Gao, C.S. Park, S.S. Lee, and D.Y. Choi, Nanoscale 11, 3933 (2019).

    Article  Google Scholar 

  6. A. Ahmadivand, B. Gerislioglu, and N. Pala, J. Phys. Chem. C 121, 19966 (2017).

    Article  CAS  Google Scholar 

  7. A.V. Pogrebnyakov, J.A. Bossard, J.P. Turpin, J.D. Musgraves, H.J. Shin, C. Rivero-Baleine, N. Podraza, K.A. Richardson, D.H. Werner, and T.S. Mayer, Opt. Mater. Express 8, 2264 (2018).

    Article  CAS  Google Scholar 

  8. X. Zhang and Z. Liu, Nat. Mater. 7, 435 (2008).

    Article  CAS  Google Scholar 

  9. D.-H. Kwon and D.H. Werner, New J. Phys. 10, 115023 (2008).

    Article  Google Scholar 

  10. A. Sarangan, J. Duran, V. Vasilyev, N. Limberopoulos, I. Vitebskiy, and I. Anisimov, IEEE Photonics J. 10, 1 (2018).

    Article  Google Scholar 

  11. Z.H. Jiang, S. Yun, F. Toor, D.H. Werner, and T.S. Mayer, ACS Nano 5, 41 (2011).

    Google Scholar 

  12. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).

    Article  CAS  Google Scholar 

  13. V. Klimov, S. Sun, and G.-Y. Guo, Opt. Express 20, 13071 (2012).

    Article  Google Scholar 

  14. F. Wen, Y. Zhang, S. Gottheim, N.S. King, Y. Zhang, P. Nordlander, and N.J. Halas, ACS Nano 9, 6428 (2015).

    Article  CAS  Google Scholar 

  15. M. Decker, C. Kremers, A. Minovich, I. Staude, A.E. Miroshnichenko, D. Chigrin, D.N. Neshev, C. Jagadish, and Y.S. Kivshar, Opt. Express 21, 8879 (2013).

    Article  Google Scholar 

  16. D.A. Smirnova, A.E. Miroshnichenko, Y.S. Kivshar, and A.B. Khanikaev, Phys. Rev. B Condens. Matter Mater. Phys. 92, 161406 (2015).

    Article  Google Scholar 

  17. H.S. Ee and R. Agarwal, Nano Lett. 16, 2818 (2016).

    Article  CAS  Google Scholar 

  18. V. Srivastava, M. Tolani, R. Kumar, and Sunny, IEEE Sensor J. 18, 540 (2018).

    Article  CAS  Google Scholar 

  19. E.M. Vinod, K. Ramesh, and K.S. Sangunni, Sci. Rep. 5, 8050 (2015).

    Article  CAS  Google Scholar 

  20. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, Nat. Mater. 7, 653 (2008).

    Article  CAS  Google Scholar 

  21. J.W. Park, S.H. Eom, H. Lee, J.L.F. Da Silva, Y.S. Kang, T.Y. Lee, and Y.H. Khang, Phys. Rev. B Condens. Matter Mater. Phys. 80, 115209 (2009).

    Article  Google Scholar 

  22. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chongand, and S.R. Elliott, Science 336, 1566 (2012).

    Article  CAS  Google Scholar 

  23. P. Li, X. Yang, T.W.W. Maß, J. Hanss, M. Lewin, A.K.U. Michel, M. Wuttig, and T. Taubner, Nat. Mater. 15, 870 (2016).

    Article  CAS  Google Scholar 

  24. J. Siegel, A. Schropp, J. Solis, C.N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004).

    Article  CAS  Google Scholar 

  25. C.M. Chang, C.H. Chu, M.L. Tseng, H.-P. Chiang, M. Mansuripurand, and D.P. Tsai, Opt. Express 19, 9492 (2011).

    Article  CAS  Google Scholar 

  26. S. Park, D. Park, K. Jeong, T. Kim, S. Park, M. Ahn, W.J. Yang, J.H. Han, H.S. Jeong, S.G. Jeon, J.Y. Song, and M.H. Cho, ACS Appl. Mater. Interfaces 7, 21819 (2015).

    Article  CAS  Google Scholar 

  27. R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett. 10, 414 (2010).

    Article  CAS  Google Scholar 

  28. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  CAS  Google Scholar 

  29. A. Ahmadivand, B. Gerislioglu, R. Sinha, M. Karabiyik, and N. Pala, Sci. Rep. 7, 42807 (2017).

    Article  CAS  Google Scholar 

  30. A.D. Ellis, J. Zhao, and D. Cotter, J. Light. Technol. 28, 423 (2010).

    Article  Google Scholar 

  31. P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, and P.S.J. Russell, Opt. Express 13, 236 (2005).

    Article  CAS  Google Scholar 

  32. Z. Li, A.M. Heidt, N. Simakov, Y. Jung, J.M.O. Daniel, S.U. Alam, and D.J. Richardson, Opt. Express 21, 26450 (2013).

    Article  CAS  Google Scholar 

  33. Y. Chen, Z. Xie, J. Huang, Z. Deng, and B. Chen, Optica 6, 884 (2019).

    Article  CAS  Google Scholar 

  34. V. Nooshnaband and A. Ahmadivand, IEEE Photonics Technol. Lett. 29, 1556 (2017).

    Article  Google Scholar 

  35. C.H. Chu, M.L. Tseng, J. Chen, P.C. Wu, Y.H. Chen, H.C. Wang, T.Y. Chen, W.T. Hsieh, H.J. Wu, G. Sun, and D.P. Tsai, Laser Photonics Rev. 10, 986 (2016).

    Article  CAS  Google Scholar 

  36. E.D. Palik, Handbook of Optical Constants of Solids (San Diego: Academic, 1998).

    Google Scholar 

  37. T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, and N.I. Zheludev, Science 330, 1510 (2010).

    Article  CAS  Google Scholar 

  38. A. Rosa, A. Gutierrez, A. Brimont, A. Griol, and P. Sanchis, Opt. Express 24, 191 (2016).

    Article  CAS  Google Scholar 

  39. L. Shen, M. Huang, S. Zheng, L. Yang, X. Peng, X. Cao, S. Li, and J. Wang, IEEE Photonics J. 11, 1 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Srivastava, V., Kumar, M. et al. All-Dielectric Metasurface-Enabled Near-Infrared Switching Based on Ge2Sb2Te5 Phase-Change Material. J. Electron. Mater. 49, 3913–3919 (2020). https://doi.org/10.1007/s11664-020-08101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08101-1

Keywords

Navigation