Skip to main content
Log in

A Rapid Response Humidity Sensor for Monitoring Human Respiration with TiO2-Based Nanotubes as a Sensing Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The use of TiO2-based samples with nanotube (NT) shape for humidity sensing has been investigated. Sample characterization was carried out using x-ray diffraction analysis, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy. x-Ray diffraction analysis showed that the nanotubes had TiO2, NaO3, and H2Ti2O5 phases. SEM revealed that the NTs had diameters ranging from 20 nm to 200 nm and very different lengths. TiO2-based nanotubes were coated using the drop-casting method onto a quartz crystal microbalance (QCM). The synthesis of TiO2-based NTs was performed using a hydrothermal process. Humidity sensing measurements showed that the resonant frequency of TiO2-based NTs deposited onto the QCM was very sensitive to humidity changes. It was also shown that the sensor could be used for respiratory monitoring purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Farahani, R. Wagiran, and M.N. Hamidon, Sensors 14, 7881 (2014).

    Article  Google Scholar 

  2. U. Mogera, A.A. Sagade, S.J. George, and G.U. Kulkarni, Sci. Rep. 4, 4103 (2014).

    Article  CAS  Google Scholar 

  3. H.C. Bi, K.B. Yin, X. Xie, J. Ji, S. Wan, L.T. Sun, M. Terrones, and M.S. Dresselhaus, Sci. Rep. 3, 2714 (2013).

    Article  Google Scholar 

  4. J. Zhao, N. Li, H. Yu, Z. Wei, M.Z. Liao, P. Chen, S.P. Wang, D.X. Shi, Q.J. Sun, and G.Y. Zhang, Adv. Mater. 29, 1702076 (2017).

    Article  Google Scholar 

  5. S. Sikarwar and B.C. Yadav, Sens. Actuators A-Phys. 233, 54 (2015).

    Article  CAS  Google Scholar 

  6. H.Y. Guo, C.Y. Lan, Z.F. Zhou, P.H. Sun, D.P. Wei, and C. Li, Nanoscale 9, 6246 (2017).

    Article  CAS  Google Scholar 

  7. Z. Yuan, H.L. Tai, Z.B. Ye, C.H. Liu, G.Z. Xie, X.S. Du, and Y.D. Jiang, Sens. Actuators B-Chem. 234, 145 (2016).

    Article  CAS  Google Scholar 

  8. M.V. Kulkarni, S.K. Apte, S.D. Naik, J.D. Ambekar, and B.B. Kale, Sens. Actuators B-Chem. 178, 140 (2013).

    Article  CAS  Google Scholar 

  9. Y.L. Zhang and Y. Cui, Measurement 147, 106853 (2019).

    Article  Google Scholar 

  10. S. Vigneselvan, V. Manikandan, I. Petrila, A. Vanitha, and J. Chandrasekaran, J. Electron. Mater. 48, 7495 (2019).

    Article  CAS  Google Scholar 

  11. R. Majumder, S. Kundu, R. Ghosh, S. Roy, U. Guria, and M.P. Chowdhury, Appl. Nanosci. 9, 1553 (2019).

    Article  CAS  Google Scholar 

  12. Y. Gu, Z. Ye, N. Sun, X.L. Kuang, W.J. Liu, X.J. Song, L. Zhang, W. Bai, and X.D. Tang, J. Mater. Sci.: Mater. Electron. 30, 18767 (2019).

    CAS  Google Scholar 

  13. L.Y. Ma, R.H. Wu, A. Patil, S.H. Zhu, Z.H. Meng, H.Q. Meng, C. Hou, Y.F. Zhang, Q. Liu, R. Yu, J. Wang, N.B. Lin, and X.Y. Liu, Adv. Funct. Mater. 29, 1904549 (2019).

    Article  CAS  Google Scholar 

  14. W.Y. Xie, B. Liu, S.H. Xiao, H. Li, Y.R. Wang, D.P. Cai, D.D. Wang, L.L. Wang, Y. Liu, Q.H. Li, and T.H. Wang, Sens. Actuators B-Chem. 215, 125 (2015).

    Article  CAS  Google Scholar 

  15. L.L. Wang, H.Y. Wang, W.C. Wang, K. Li, X.C. Wang, and X.J. Li, Sens. Actuators B-Chem. 177, 740 (2013).

    Article  CAS  Google Scholar 

  16. E. Maciak, Sensors 19, 629 (2019).

    Article  Google Scholar 

  17. Y.H. Luo, C.Y. Chen, K. Xia, S.H. Peng, H.Y. Guan, J.Y. Tang, H.U. Lu, J.H. Yu, J. Zhang, Y. Xiao, and Z. Chen, Opt. Express 24, 8956 (2016).

    Article  CAS  Google Scholar 

  18. C.A. Grimes, D. Kouzoudis, E.C. Dickey, D. Qian, M.A. Anderson, R. Shahidain, M. Lindsey, and L. Green, J. Appl. Phys. 87, 5341 (2000).

    Article  CAS  Google Scholar 

  19. Y.L. Tang, Z.J. Li, J.Y. Ma, L. Wang, J. Yang, B. Du, Q.K. Yu, and X.T. Zu, Sens. Actuators B-Chem. 215, 283 (2015).

    Article  CAS  Google Scholar 

  20. D.Z. Zhang, H.N. Chen, P. Li, D.Y. Wang, and Z.M. Yang, IEEE Sens. J. 19, 2909 (2019).

    Article  CAS  Google Scholar 

  21. N.B. Gao, H.Y. Li, W.H. Zhang, Y.Z. Zhang, Y. Zeng, Z.X. Hu, J.Y. Liu, J.J. Jiang, L. Miao, F. Yi, and H. Liu, Sens. Actuators B-Chem. 293, 129 (2019).

    Article  CAS  Google Scholar 

  22. T. Julian, A. Rianjanu, S.N. Hidayat, A. Kusumaatmaja, R. Roto, and K. Triyana, J. Sens. Sens. Syst. 8, 243 (2019).

    Article  Google Scholar 

  23. Y.S. Zhang, K. Yu, R.L. Xu, D.S. Jiang, L.Q. Luo, and Z.Q. Zhu, Sens. Actuators A-Phys. 120, 142 (2005).

    Article  CAS  Google Scholar 

  24. A. Farzaneh, A. Mohammadzadeh, M.D. Esrafili, and O. Mermer, Ceram. Int. 45, 8362 (2019).

    Article  CAS  Google Scholar 

  25. D.Z. Zhang, H.N. Chen, X.Y. Zhou, D.Y. Wang, Y.B. Jin, and S.J. Yu, Sens. Actuators A-Phys. 295, 687 (2019).

    Article  CAS  Google Scholar 

  26. Z.Q. Wu, S.B. Zhu, X.C. Dong, Y. Yao, Y.F. Guo, S.F. Gu, and Z.W. Zhou, Anal. Chim. Acta 1080, 178 (2019).

    Article  CAS  Google Scholar 

  27. X.F. Wang, B. Ding, J.Y. Yu, M.R. Wang, and F.K. Pan, Nanotechnology 21, 055502 (2010).

    Article  Google Scholar 

  28. Y.Y. Zhang, W.Y. Fu, H.B. Yang, Q. Qi, Y. Zeng, T. Zhang, R.X. Ge, and G. Zou, Appl. Surf. Sci. 254, 5545 (2008).

    Article  CAS  Google Scholar 

  29. T. Addabbo, A. Fort, M. Mugnaini, V. Vignoli, A. Baldi, and M. Bruzzi, IEEE Trans. Instrum. Meas. 67, 722 (2018).

    Article  CAS  Google Scholar 

  30. A. Erol, S. Okur, B. Comba, O. Mermer, and M.C. Arikan, Sens. Actuators B-Chem. 145, 174 (2010).

    Article  CAS  Google Scholar 

  31. L. Arruda, C.M. Santos, M.O. Orlandic, W.H. Schreinerd, and P. Lisboa-Filho, Ceram. Int. 41, 2884 (2015).

    Article  CAS  Google Scholar 

  32. S. Zhang, J. Zhou, Z. Zhang, Z. Du, A.V. Vorontsov, and Z. Jin, Chin. Sci. Bull. 45, 16 (2000).

    Article  Google Scholar 

  33. A. Masturah and K.K. Siti, Malays. J. Anal. Sci. 20, 1405 (2016).

    Article  Google Scholar 

  34. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S. Al-Deyab, and Y. Lai, Adv. Sci. 4, 1600152 (2017).

    Article  Google Scholar 

  35. A.A. Walaa, H.A. Ibrahim, A.A. Basant, A. Nashaat, M.M. Aya, Y. Marwan, N.I. Rezk, A.M. Mona, and K.A. Nageh, Nanoscale Adv. 1, 2801 (2019).

    Article  Google Scholar 

  36. J. Mathew, Y. Semenova, and G. Farrell, Biomed. Opt. Express 3, 3325 (2012).

    Article  Google Scholar 

  37. D. Zhang, J. Tong, B. Xia, and Q. Xue, Sens. Actuators B Chem. 203, 263 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by İnönü University with Project No. FBA-2019-1854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Atalay.

Additional information

Publisher ’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atalay, S., Erdemoğlu, S., Kolat, V.S. et al. A Rapid Response Humidity Sensor for Monitoring Human Respiration with TiO2-Based Nanotubes as a Sensing Layer. J. Electron. Mater. 49, 3209–3215 (2020). https://doi.org/10.1007/s11664-020-08006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08006-z

Keywords

Navigation