Skip to main content
Log in

High-Performance Solid-State Thermal Diode Consisting of Ag2(S,Se,Te)

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermal diodes, in which the magnitude of the heat flow |J| changes with its direction, are a key technology for constructing heat management systems. Composite thermal diodes are composed of two materials possessing opposite temperature dependence of thermal conductivity. Silver chalcogenides Ag2(S,Se,Te) were employed in this work because of their drastic change in thermal conductivity, with a phase transition in the temperature range of 300 K < T < 450 K. A jump of 200% to 500% in their thermal conductivity is observed at the phase-transition temperature, most likely due to the change in electron thermal conductivity. A thermal diode consisting of Ag2S0.6Se0.4 and Ag2S0.1Te0.9, both of which were selected by considering the measured thermal conductivity, has been prepared, and its performance evaluated. The developed thermal diode was confirmed to possess a thermal rectification ratio (TRR) = |Jlarge|/|Jsmall| = 2.7 ± 0.1 when installed between two heat reservoirs kept at TH = 413 K and TL = 300 K. Notably, this TRR is the highest ever reported for a solid-state thermal diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Rathod and J. Banerjee, Renew. Sustain. Energy Rev. 18, 246 (2013).

    Article  CAS  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  3. G. Wehmeyer, T. Yabuki, C. Monachon, J. Wu, and C. Dames, Appl. Phys. Rev. 4, 041304 (2017).

    Article  Google Scholar 

  4. M. Peyrard, Europhys. Lett. 76, 49 (2006).

    Article  CAS  Google Scholar 

  5. B. Hu, D. He, L. Yang, and Y. Zhang, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 060201 (2006).

    Article  CAS  Google Scholar 

  6. T. Takeuchi, Sci. Technol. Adv. Mater. 15, 064801 (2014).

    Article  Google Scholar 

  7. E. Pallecchi, Z. Chen, G.E. Fernandes, Y. Wan, J.H. Kim, and J. Xu, Mater. Horizons 2, 125 (2015).

    Article  CAS  Google Scholar 

  8. A.L. Cottrill, S. Wang, A.T. Liu, W.J. Wang, and M.S. Strano, Adv. Energy Mater. 8, 1702692 (2018).

    Article  Google Scholar 

  9. H. Okazaki, J. Phys. Soc. Jpn. 23, 355 (1967).

    Article  CAS  Google Scholar 

  10. H. Okazaki, J. Phys. Soc. Jpn. 43, 213 (1977).

    Article  CAS  Google Scholar 

  11. H. Chen, Z. Yue, D. Ren, H. Zeng, T. Wei, K. Zhao, R. Yang, P. Qiu, L. Chen, and X. Shi, Adv. Mater. 31, 1806518 (2018).

    Article  Google Scholar 

  12. D. Jung, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Mater. Trans. 53, 1216 (2012).

    Article  CAS  Google Scholar 

  13. K. Hirata, T. Matsunaga, S. Singh, M. Matsunami, and T. Takeuchi, J. Thermoelectr. Soc. Jpn. 16, 3 (2019).

    Google Scholar 

  14. S. Miyatani, J. Phys. Soc. Jpn. 15, 1586 (1960).

    Article  CAS  Google Scholar 

  15. G.A. Pal’Yanova, K.V. Chudnenko, and T.V. Zhuravkova, Thermochim. Acta 575, 90 (2014).

    Article  Google Scholar 

  16. G.A. Pal’yanova, R.G. Kravtsova, and T.V. Zhuravkova, Russ. Geol. Geophys. 56, 1738 (2015).

    Article  Google Scholar 

  17. S. Min, J. Blumm, and A. Lindemann, Thermochim. Acta 455, 46 (2007).

    Article  CAS  Google Scholar 

  18. T. Takeuchi, H. Goto, R.S. Nakayama, Y.I. Terazawa, K. Ogawa, A. Yamamoto, T. Itoh, and M. Mikami, J. Appl. Phys. 111, 093517 (2012).

    Article  Google Scholar 

  19. C.Y. Ho, R.W. Powell, and P.E. Liley, J. Phys. Chem. Ref. Data 1, 407 (1972).

    Article  Google Scholar 

  20. R. Sadanaga and S. Sueno, Mineral. J. 5, 124 (1967).

    Article  CAS  Google Scholar 

  21. J. Yu and H. Yun, Acta Crystallogr. Sect. E Struct. Rep. Online 67, 1 (2011).

    Article  Google Scholar 

  22. A. Lee and J.L. Boer, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 49, 1444 (1993).

    Article  Google Scholar 

  23. M.T. Agne, P.W. Voorhees, and G.J. Snyder, Adv. Mater. 31, 1902980 (2019).

    Article  Google Scholar 

  24. K. Honma and K. Iida, J. Phys. Soc. Jpn. 56, 1828 (1987).

    Article  CAS  Google Scholar 

  25. X. Shi, H. Chen, F. Hao, R. Liu, T. Wang, P. Qiu, U. Burkhardt, Y. Grin, and L. Chen, Nat. Mater. 17, 421 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Hirata.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material:

Supplementary material 1 (PDF 771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, K., Matsunaga, T., Singh, S. et al. High-Performance Solid-State Thermal Diode Consisting of Ag2(S,Se,Te). J. Electron. Mater. 49, 2895–2901 (2020). https://doi.org/10.1007/s11664-020-07964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07964-8

Keywords

Navigation