Skip to main content
Log in

Enhancement of the Thermoelectric Performance of Si-Ge Nanocomposites Containing a Small Amount of Au and Optimization of Boron Doping

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, Si65-xGe31Au4Bx (x = 1, 2, 3, and 4) nanocomposites were synthesized by ball milling and spark plasma sintering to investigate the boron concentration dependence of thermoelectric properties. The electrical resistivity observed for samples made at 2 ≤ x ≤ 4 was almost constant over a wide temperature from 300 K to 1000 K, indicating the strongest scattering limit with disordering. All samples possessed the large Seebeck coefficient, mainly, B-1% and B-3% doped sample shows the significant Seebeck coefficient exceeding 450 μVK−1, which was presumably attributed to a sharp peak in the electronic density of states near the valence band edge. As a result, the largest power factor of 2.1 mWm−1K−2 was observed at x = 3. In addition, the lowest thermal conductivity less than 1.3 Wm−1K−1 was observed for x = 2,3, and 4. The significant power factor, together with low thermal conductivity naturally led to obtain high ZT value of 1.63 at 973 K. This value is much higher than that of previously reported other Si-Ge based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Book  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  3. C.B. Vining, J. Appl. Phys. 69, 331 (1991).

    Article  CAS  Google Scholar 

  4. D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).

    Article  CAS  Google Scholar 

  5. D.M. Rowe and V.S. Shukla, J. Appl. Phys. 52, 7421 (1981).

    Article  CAS  Google Scholar 

  6. G.L. Bennett, J.J. Lombardo, and B.J. Rock, Nuclear Engineer 25, 49 (1984).

    Google Scholar 

  7. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, and J. Klatsky, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  8. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, and M.S. Dresselhaus, Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  9. S. Bathula, M. Jayasimhadri, N. Singh, A.K. Srivastava, J. Pulikkotil, A. Dhar, and R.C. Budhani, Appl. Phys. Lett. 101, 213902 (2012).

    Article  Google Scholar 

  10. S. Bathula, M. Jayasimhadri, B. Gahtori, N.K. Singh, K. Tyagi, A. Srivastava, and A. Dhar, Nanoscale 7, 12474 (2015).

    Article  CAS  Google Scholar 

  11. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  CAS  Google Scholar 

  12. R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswal, and S.K. Gupta, J. Mater. Chem. A 2, 6922 (2010).

    Article  Google Scholar 

  13. K. Delime-Codrin, M. Omprakash, S. Ghodke, R. Sobota, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, and T. Takeuchi, Appl. Phys. Express 12, 045507 (2019).

    Article  CAS  Google Scholar 

  14. S. Bathula, M. Jayasimhadri, B. Gahtori, A. Kumar, A.K. Srivastava, and A. Dhar, Phys. Chem. Chem. Phys. 19, 25180 (2017).

    Article  CAS  Google Scholar 

  15. S. Ahmad, A. Singh, A. Bohra, R. Basu, S. Bhattacharya, R. Bhatt, K.N. Meshram, M. Roy, S.K. Sarkar, Y. Hayakawa, A.K. Debnath, D.K. Aswal, and S.K. Gupta, Nano Energy 27, 282 (2017).

    Article  Google Scholar 

  16. M. Adachi, S. Nishino, K. Hirose, M. Kiyama, Y. Yamamoto, M. Inukai, M. Omprakash, and T. Takeuchi (to be published).

  17. M. Omprakash, K. Delime-Codrin, G. Swapnil, S. Saurabh, S. Nishino, M. Adachi, Y. Yamamoto, M. Matsunami, S. Harish, M. Shimomura, and T. Takeuchi, Jpn. J. Appl. Phys. 58, 125501 (2019).

    Article  Google Scholar 

  18. A.F. Ioffe and A.R. Regel, Prog. Semicond. 4, 237 (1960).

    Google Scholar 

  19. Y. Li, J. Han, Q. Xiang, C. Zhang, and J. Li, J. Mater. Sci. Mater. Electr. 30, 9163 (2019).

    Article  CAS  Google Scholar 

  20. S. Wongprakarn, S. Pinitsoontorn, S. Tanusilp, and K. Kurosaki, Phys. Status Solidi A 214, 1700235 (2017).

    Article  Google Scholar 

  21. S. Ahmad, R. Basu, P. Sarkar, A. Singh, A. Bohra, S. Bhattacharya, R. Bhatt, K.N. Meshram, S. Samanta, P. Bhatt, M. Navaneethan, Y. Hayakawa, A.K. Debnath, S.K. Gupta, D.K. Aswal, K.P. Muthe, and S.C. Gadkari, Materialia 4, 147 (2018).

    Article  Google Scholar 

  22. Z. Zamanipour and D. Vashaee, J. Appl. Phys. 112, 093714 (2012).

    Article  Google Scholar 

  23. P. Norouzzadeh, A. Nozariasbmarz, J.S. Krasinski, and D. Vashaee, J. Appl. Phys. 117, 214303 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omprakash Muthusamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthusamy, O., Ghodke, S., Singh, S. et al. Enhancement of the Thermoelectric Performance of Si-Ge Nanocomposites Containing a Small Amount of Au and Optimization of Boron Doping. J. Electron. Mater. 49, 2813–2824 (2020). https://doi.org/10.1007/s11664-019-07857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07857-5

Keywords

Navigation