Skip to main content
Log in

Dual-Band Microwave Sensor for Investigation of Liquid Impurity Concentration Using a Metamaterial Complementary Split-Ring Resonator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, a dual-band microwave sensor using a complementary split-ring resonator (CSRR) is presented that determines the concentration of any liquid bi-mixture like water in ethanol and urea in whole milk. The proposed sensor is unique as it is designed, simulated and fabricated using a single-metamaterial cell structure to operate at dual frequency, i.e. 2.45 GHz and 5.8 GHz using an industrial, scientific and medical (ISM) band. The sensor is fabricated on FR4 substrate using a typical photolithography technique, and simulated results are in agreement with the measured results. Investigation of the sensing mechanism for impurity concentration (i.e. water in ethanol or urea in milk) is performed by placing the sample mixture in the pipette placed across from the sensor. As microwave sensors respond to the change in the dielectric constant of the nearby materials, when the liquid mixture concentration varies, there is shifting in the resonant frequency at which the sensor is designed. The proposed sensor is unique due to dual-band resonance, reusability, compactness (12 mm × 20 mm), low cost, noninvasiveness, nondestructiveness, and a user-friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. M. Chakraborty, S. Member, and K. Biswas, IEEE Sens. J. 18, 2395 (2018).

    Article  CAS  Google Scholar 

  2. Pallavi Gupta, Anwar Sadat, and M.J.R. Khan, IEEE Sens. J. 14, 2930 (2014).

    Article  Google Scholar 

  3. Z. Akhter and M.J. Akhtar, IEEE Trans. Instrum. Meas. 65, 2394 (2016).

    Article  CAS  Google Scholar 

  4. S.P. Chakyar, S.K. Simon, C. Bindu, J. Andrews, V.P. Joseph, S.P. Chakyar, S.K. Simon, C. Bindu, J. Andrews, and V.P. Joseph, J. Appl. Phys. 121, 054101 (2017).

    Article  Google Scholar 

  5. C. Lee and C. Yang, IEEE Sens. J. 14, 695 (2014).

    Article  Google Scholar 

  6. M.A.H. Ansari, A.K. Jha, Z. Akhter, and M. Jaleel Akhtar, IEEE Sens. J. 18, 6596 (2018).

    Article  CAS  Google Scholar 

  7. E.L. Chuma, S. Member, Y. Iano, G. Fontgalland, S. Member, L. Lorenzo, and B. Roger, IEEE Sens. J. 18, 9978 (2018).

    Article  CAS  Google Scholar 

  8. M.A.H. Ansari, A.K. Jha, and M.J. Akhtar, IEEE Sens. J. 15, 7181 (2015).

    Article  CAS  Google Scholar 

  9. L. Benkhaoua, S. Mouissat, M.T. Benhabiles, Y. Yakhlef, M.L. Riabi, International Microwave Bio Conference (IMBIOC) (2017), pp. 1–3.

  10. D.-K. Lee, J.-H. Kang, J. Kwon, J.-S. Lee, S. Lee, D.H. Woo, J.H. Kim, C.-S. Song, Q.-H. Park, and M. Seo, Sci. Rep. 7, 8146 (2017).

    Article  Google Scholar 

  11. S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H. Cui, and C. Du, IEEE Photonics Technol. Lett. 28, 986 (2016).

    CAS  Google Scholar 

  12. K. Zhao, Y. Liu, and Q. Zhang, J. Mol. Liq. 273, 37 (2019).

    Article  CAS  Google Scholar 

  13. S.N. Jha, K. Narsaiah, A.L. Basediya, R. Sharma, P. Jaiswal, R. Kumar, and R. Bhardwaj, J. Food Sci. Technol. 48, 387 (2011).

    Article  Google Scholar 

  14. H. Zhou, D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and X. Mu, Sci. Rep. 8, 14801 (2018).

    Article  Google Scholar 

  15. Nikolina Jankovic and Vasa Radonic, Sensors (Basel) 17, 2713 (2017).

    Article  Google Scholar 

  16. M.S. Boybay and O.M. Ramahi, IEEE Trans. Instrum. Meas. 61, 3039 (2012).

    Article  CAS  Google Scholar 

  17. S. Ramya and I. Srinivasa Rao, Prog. Electromagn. Res. 50, 23 (2016).

    Article  Google Scholar 

  18. A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, IEEE Sens. J. 14, 1345 (2014).

    Article  Google Scholar 

  19. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, Sens. Actuators A Phys. 189, 233 (2013).

    Article  CAS  Google Scholar 

  20. G. Gennarelli, S. Romeo, M.R. Scarfì, and F. Soldovieri, IEEE Sens. J. 13, 1857 (2013).

    Article  Google Scholar 

  21. V. Veselago, L.S. Braginsky, V. Shklover, and C. Hafner, J. Comput. Theor. Nanosci. 3, 189 (2006).

    Article  CAS  Google Scholar 

  22. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).

    Article  Google Scholar 

  23. F. Falcone, T. Lopetegi, and J.D. Baena, IEEE Microw. Wirel. Compon. Lett. 14, 280 (2004).

    Article  Google Scholar 

  24. F. Falcone, T. Lopetegi, and M.A.G. Laso, Phys. Rev. Lett. 93, 197401 (2004).

    Article  CAS  Google Scholar 

  25. J. Bonache, I. Gil, J. García-García, and F. Martín, IEEE Trans. Microw. Theory 54, 265 (2006).

    Article  Google Scholar 

  26. Y.K. Awasthi, H. Singh, M. Sharma, S. Kumari, and A.K. Verma, J. Eng. 9, 512 (2017).

    Google Scholar 

  27. J. Bonache, M. Gil, and I. Gil, IEEE Microw. Wirel. Compon. Lett. 16, 543 (2006).

    Article  Google Scholar 

  28. T. Azad and S. Ahmed, Int. J. Food Contam. 3, 1 (2016).

    Article  Google Scholar 

  29. J.Z. Bao, M.L. Swicord, and C.C. Davis, J. Chem. Phys. 104, 4441 (1996).

    Article  CAS  Google Scholar 

  30. G. Durante, W. Becari, F.A.S. Lima, and H.E.M. Peres, IEEE Sens. J. 16, 861 (2016).

    Article  CAS  Google Scholar 

  31. D. Agranovicha, I. Renhartb, P.B. Ishaia, G. Katzc, D. Bezmanc, and Y. Feldman, Elsevier Food Control 63, 195 (2016).

    Article  Google Scholar 

  32. O. Akgol, E. Unal, M. Bagbanci, M. Karaaslan, U.K. Sevim, M. Ozturk, and A. Bhadauria, J. Electron. Mater. 48, 2469 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Awasthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, Y., Awasthi, Y.K. Dual-Band Microwave Sensor for Investigation of Liquid Impurity Concentration Using a Metamaterial Complementary Split-Ring Resonator. J. Electron. Mater. 49, 385–394 (2020). https://doi.org/10.1007/s11664-019-07761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07761-y

Keywords

Navigation