Skip to main content
Log in

Electrocaloric Effect with Variations of Diffusivity in Relaxor Ferroelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Diffusivity is the quantitative measure of the relaxor nature of a ferroelectric material. The observed electrocaloric effect of the relaxor ferroelectrics due to the change of diffusivity are reported in this article. Four samples with diffusivities 1.55, 1.72, 1.94 and 2.18 are prepared by precisely doping La in Pb (Zr0.65Ti0.35)O3 [i.e. PZT (65/35)], from 6% to 9%. These values are deduced from the dielectric measurements which are performed in the frequency range from 100 Hz to 10 MHz at different temperatures ranging from 173 K to 573 K. The temperature (Tm), where the dielectric constant is the highest, is also found to decrease with increasing La concentration. For 6% doped sample, the transition occurs around 483 K and for 9%, it is around 364 K. As the value of diffusivity is varied from 1.55 to 2.18, both the values of entropy and temperature changes (ΔS and ΔT) get reduced. The highest ΔS observed is around 0.37 J kg−1 K−1 and the corresponding ΔT is 0.49 K for the diffusivity of 1.55. For the highest diffusivity, the values of ΔS and ΔT are found to be 0.12 J kg−1 K−1 and 0.11 K, respectively. Apart from these changes, it is also observed that as the transition temperature decreases with increasing diffusivity, the maximum ΔS and ΔT values occur at lower temperatures which is consistent with the change of Tm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q. Zhang, and Q. Wang, Adv. Mater. 27, 1450 (2015).

    Article  CAS  Google Scholar 

  2. J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu, Z. Zhong, J. Chen, Q.M. Zhang, and X. Qian, Joule 3, 1200 (2019).

    Article  Google Scholar 

  3. X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzalez-Alonso, S. Kar-Narayan, A. Planes, L. Manosa, and N.D. Mathur, Adv. Mater. 25, 1360 (2013).

    Article  CAS  Google Scholar 

  4. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, and N.D. Mathur, Science 311, 1270 (2006).

    Article  CAS  Google Scholar 

  5. S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, X. Li, E. Furman, L.J. Gorny, M. Lin, B. Malič, M. Kosec, R. Blinc, and R. Pirc, Appl. Phys. Lett. 97, 162904 (2010).

    Article  Google Scholar 

  6. A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, and N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).

    Article  Google Scholar 

  7. Y. Bai, X. Han, X.C. Zheng, and L. Qiao, Sci. Rep. 3, 2895 (2013).

    Article  Google Scholar 

  8. F. Le Goupil and N.M. Alford, APL Mater. 4, 064104 (2016).

    Article  Google Scholar 

  9. G. Zhang, Z. Chen, B. Fan, J. Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, and Q. Wang, APL Mater. 4, 064103 (2016).

    Article  Google Scholar 

  10. G. Zhang, M. Chen, B. Fan, Y. Liu, M. Li, S. Jiang, H. Huang, H. Liu, H. Li, and Q. Wang, J. Am. Ceram. Soc. 100, 4581 (2017).

    Article  CAS  Google Scholar 

  11. J. Qian, P. Hu, C. Liu, J. Jiang, Z. Dan, J. Ma, Y. Lin, C.-W. Nan, and Y. Shen, Sci. Bull. 63, 356 (2018).

    Article  CAS  Google Scholar 

  12. R. Pirc, Z. Kutnjak, R. Blinc, and Q.M. Zhang, J. Appl. Phys. 110, 074113 (2011).

    Article  Google Scholar 

  13. H. Aziguli, X. Chen, Y. Liu, G. Yang, P. Yu, and Q. Wang, Appl. Phys. Lett. 112, 193902 (2018).

    Article  Google Scholar 

  14. F.L. Goupil, A.-K. Axelsson, L.J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, and N.M. Alford, Adv. Energy Mater. 4, 1301688 (2014).

    Article  Google Scholar 

  15. S. Samanta, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S.R. Rao, and M. Murakami, J. Mater. Sci. 52, 13012 (2017).

    Article  CAS  Google Scholar 

  16. S. Samanta, V. Sankaranarayanan, K. Sethupathi, and M.S.R. Rao, Vacuum 157, 514 (2018).

    Article  CAS  Google Scholar 

  17. V.V. Efimov, E.A. Efimova, K. Iakoubovskii, S. Khasanov, D.I. Kochubey, V.V. Kriventsov, A. Kuzmin, B.N. Mavrin, M. Sakharov, V. Sikolenko, A.N. Shmakov, and S.I. Tiutiunnikov, J. Phys. Chem. Solids 67, 2007 (2006).

    Article  CAS  Google Scholar 

  18. C.S. Lynch, Acta Mater. 44, 4137 (1996).

    Article  CAS  Google Scholar 

  19. E.T. Keve and K.L. Bye, J. Appl. Phys. 46, 810 (1975).

    Article  CAS  Google Scholar 

  20. P. Fang, H. Fan, J. Li, L. Chen, and F. Liang, J. Alloys Compd. 497, 416 (2010).

    Article  CAS  Google Scholar 

  21. A.K. Yadav, A. Anita, S. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, and S. Sen, RSC Adv. 7, 39434 (2017).

    Article  CAS  Google Scholar 

  22. M.A. Mohiddon and K.L. Yadav, Phys. Status Solidi A 206, 1606 (2009).

    Article  CAS  Google Scholar 

  23. M.A. Mohiddon and K.L. Yadav, J. Phys. D Appl. Phys. 40, 7540 (2007).

    Article  CAS  Google Scholar 

  24. V. Bovtun, S. Kamba, S. Veljko, D. Nuzhnyy, J. Kroupa, M. Savinov, P. Vaněk, J. Petzelt, J. Holc, M. Kosec, H. Amorín, and M. Alguero, Phys. Rev. B 79, 104111 (2009).

    Article  Google Scholar 

  25. R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).

    Article  CAS  Google Scholar 

  26. S. Samanta, V. Sankaranarayanan, and K. Sethupathi, J. Mater. Sci. Mater. Electron. 29, 7239 (2018).

    Article  CAS  Google Scholar 

  27. G.H. Haertling, Integr. Ferroelectr. 3, 207 (2006).

    Article  Google Scholar 

  28. Y. Zhao, X.Q. Liu, J.W. Wu, S.Y. Wu, and X.M. Chen, J. Alloys Compd. 729, 57 (2017).

    Article  CAS  Google Scholar 

  29. B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J. Wang, and Z.D. Zhang, Appl. Phys. Lett. 96, 102903 (2010).

    Article  Google Scholar 

  30. X.D. Jian, B. Lu, D.D. Li, Y.B. Yao, T. Tao, B. Liang, J.H. Guo, Y.J. Zeng, J.L. Chen, and S.G. Lu, ACS Appl. Mater. Interfaces 10, 4801 (2018).

    Article  CAS  Google Scholar 

  31. X.-D. Jian, B. Lu, D.-D. Li, Y.-B. Yao, T. Tao, B. Liang, and S.-G. Lu, J. Alloys Compd. 742, 165 (2018).

    Article  CAS  Google Scholar 

  32. Y.-B. Ma, K. Albe, and B.-X. Xu, Phys. Rev. B 91, 184108 (2015).

    Article  Google Scholar 

  33. Y.-B. Ma, C. Molin, V.V. Shvartsman, S. Gebhardt, D.C. Lupascu, K. Albe, and B.-X. Xu, J. Appl. Phys. 121, 024103 (2017).

    Article  Google Scholar 

  34. G. Singh, V.S. Tiwari, and P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shibnath Samanta or Kanikrishnan Sethupathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Sankaranarayanan, V. & Sethupathi, K. Electrocaloric Effect with Variations of Diffusivity in Relaxor Ferroelectric Materials. J. Electron. Mater. 48, 7595–7602 (2019). https://doi.org/10.1007/s11664-019-07609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07609-5

Keywords

Navigation