Skip to main content
Log in

Selective Oxygen Sensor Prepared Using Ni-doped Zinc Ferrite Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, pure and Ni-doped zinc ferrite nanoparticles, Zn(1-x)NixFe2O4 (x = 0.02, 0.04 and 0.06), were prepared by coprecipitation followed by calcination. X-ray diffraction (XRD) analysis revealed the shrinkage in the lattice by incorporation of Ni in zinc ferrite nanoparticles. The prepared nanoparticles were 25–100 nm in size as revealed by scanning electron microscopy. Oxygen sensing characteristics were evaluated for all the prepared compositions. The results showed an increase in the response of the sensors towards oxygen by Ni doping. The increase in response may be attributed to the increase in oxygen adsorption on the particles surface by Ni doping. The response time of Zn0.96Ni0.04Fe2O4 was lowest and was 10 s for 400 ppm oxygen concentration at 180 °C. Recovery time of Ni-doped concentrations was lower than the pure zinc ferrite nanoparticles sensor. The response of Ni-doped zinc ferrite nanoparticles sensors was stable than that of the pure zinc ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, IEEE Sens. J. 11, 849 (2011).

    Article  Google Scholar 

  2. N. Yamazoe and N. Miura, IEEE Trans. COMPON., Packag. Manuf. Technol. A 18, 252 (1995).

    Article  Google Scholar 

  3. C.Y. Wang, X. Zhang, Q. Rong, N.N. Hou, and H.Q. Yu, Chemosphere 204, 202 (2018).

    Article  Google Scholar 

  4. S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, and M.C. Kanan, Sensors 9, 8158 (2009).

    Article  Google Scholar 

  5. Y. Jia, P.Y. Wu, Y.P. Jiang, Q.Y. Zhang, S.S. Zhou, F. Fang, and D.Y. Peng, New J. Chem. 38, 1100 (2014).

    Article  Google Scholar 

  6. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, Anal. Chem. 34, 1502 (1962).

    Article  Google Scholar 

  7. A. Šutka and K.A. Gross, Sens. Actuators B Chem. 222, 95 (2016).

    Article  Google Scholar 

  8. R. Ramamoorthy, P.K. Dutta, and S.A. Akbar, J. Mater. Sci. 38, 4271 (2003).

    Article  Google Scholar 

  9. N. Bhardwaj and S. Mohapatra, Ceram. Int. 42, 17237 (2016).

    Article  Google Scholar 

  10. F. Hernandez-Ramirez, J.D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J.R. Morante, M.A. Juli, S. Mathur, and A. Romano-Rodriguez, Adv. Funct. Mater. 18, 2990 (2008).

    Article  Google Scholar 

  11. S. Darshane and I.S. Mulla, Mater. Chem. Phys. 119, 319 (2010).

    Article  Google Scholar 

  12. S. Rani, S.C. Roy, and M.C. Bhatnagar, Sens. Actuators B Chem. 122, 204 (2007).

    Article  Google Scholar 

  13. M. Hjiri, R. Dhahri, K. Omri, L. El Mir, S.G. Leonardi, N. Donato, and G. Neri, Mater. Sci. Semicond. Process. 27, 319 (2014).

    Article  Google Scholar 

  14. V.B. Kamble and A.M. Umarji, RSC Adv. 5, 27509 (2015).

    Article  Google Scholar 

  15. Z. Lin, N. Li, Z. Chen, and P. Fu, Sens. Actuators B Chem. 239, 501 (2017).

    Article  Google Scholar 

  16. L. A. Kafshgari, M. Ghorbani, and A. Azizi, Part. Sci. Technol. 1, 1–7 (2018).

  17. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  18. B. Pal, S. Dhara, P.K. Giri, and D. Sarkar, J. Alloys Compd. 647, 558 (2015).

    Article  Google Scholar 

  19. Q.A. Drmosh and Z.H. Yamani, Ceram. Int. 42, 12378 (2016).

    Article  Google Scholar 

  20. Z. Wang, H. Zhou, D. Han, and F. Gu, J. Mater. Chem. C 5, 3254 (2017).

    Article  Google Scholar 

  21. B. S. RAO, V. R. REDDY, B. R. KUMAR, and T. S. RAO, in 2ND Int. Conf. Futur. TRENDS Eng. Manag. (2014), pp. 228–230.

  22. M.F. Afsar, M.A. Rafiq, and A.I.Y. Tok, RSC Adv. 7, 21556 (2017).

    Article  Google Scholar 

  23. H. Jamil, S.S. Batool, Z. Imran, M. Usman, M.A. Rafiq, M. Willander, and M.M. Hassan, Ceram. Int. 38, 2437 (2012).

    Article  Google Scholar 

  24. S. Fareed, A. Jamil, M.A. Rafiq, and F. Sher, Ceram. Int. 44, 4751 (2018).

    Article  Google Scholar 

  25. N.M. Vuong, H. Jung, D. Kim, H. Kim, and S.K. Hong, J. Mater. Chem. 22, 6716 (2012).

    Article  Google Scholar 

  26. N.D. Chinh, N.D. Quang, H. Lee, T.T. Hien, N.M. Hieu, D. Kim, C. Kim, and D. Kim, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  27. J. Zhang, C. Zhao, P.A. Hu, Y.Q. Fu, Z. Wang, W. Cao, B. Yang, and F. Placido, RSC Adv. 3, 22185 (2013).

    Article  Google Scholar 

  28. R.B. Kamble and V.L. Mathe, Sens. Actuators B Chem. 131, 205 (2008).

    Article  Google Scholar 

  29. I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M.A. Centeno, A. Bonavita, G. Neri, and S.G. Leonardi, Ceram. Int. 44, 4183 (2018).

    Article  Google Scholar 

  30. D. Selvakumar, N. Dharmaraj, N.S. Kumar, and V.C. Padaki, Synth. React. Inorg. Met. Nano-Metal Chem. 45, 753 (2014).

    Article  Google Scholar 

  31. Y. Sun, C. Shao, X. Li, X. Guo, X. Zhou, X. Li, and Y. Liu, J. Colloid Interface Sci. 516, 110 (2018).

    Article  Google Scholar 

  32. W. Sari, P. Smith, S. Leigh, and J. Covington, Proceedings 1, 401 (2017).

    Article  Google Scholar 

  33. Z. Imran, S.S. Batool, M.A. Rafiq, K. Rasool, M. Ahmad, R.N. Shahid, M.M. Hasan, and A.C.S. Appl, Mater. Interfaces 6, 4542 (2014).

    Article  Google Scholar 

  34. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  Google Scholar 

  35. A. Tricoli, M. Righettoni, and A. Teleki, Angew. Chem. Int. Ed. 49, 7632 (2010).

    Article  Google Scholar 

  36. H. Ding, J. Zhu, J. Jiang, R. Ding, Y. Feng, G. Wei, and X. Huang, RSC Adv. 2, 10324 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

M. A. Rafiq would like to acknowledge the financial support from HEC under NRPU (National Research Program for Universities) Project No. 3662 and from Chinese Academy of Sciences Presidents' fellowship initiative (Grant No. VTA0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rafiq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fareed, S., Jamil, A., Afsar, F. et al. Selective Oxygen Sensor Prepared Using Ni-doped Zinc Ferrite Nanoparticles. J. Electron. Mater. 48, 5677–5685 (2019). https://doi.org/10.1007/s11664-019-07389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07389-y

Keywords

Navigation