Skip to main content

Advertisement

Log in

A Nondestructive Method for Determining Fiber Content and Fiber Ratio in Concretes Using a Metamaterial Sensor Based on a V-Shaped Resonator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A micro sensor based on a V-shaped resonator (VSR) is implemented for the purpose of determining fiber content and ratio in construction materials as a nondestructive method. Concrete is investigated as the construction material in the study. First, electrical properties of concretes reinforced by different fiber types and ratios are investigated using the Nicolson-Ross-Weir technique. These values are used to design a nondestructive sensor based on microwave transmission line methods. At the resonance frequency, the VSR has a dense electric field. Construction material which is positioned within range of the VSR can change the distribution of the electric field, thus affecting the resonance response and transmission magnitude in the operating frequency. Since construction materials having various contents have different complex dielectric permittivity and loss tangent values, the resonance frequency, transmission magnitude and bandwidth of VSR shift correspondingly. Alterations in the resonance frequency and magnitude of transmission values which are related to the permittivity of the construction materials enable us to detect characteristics of the content in construction materials. The proposed technique is not only capable of sensing the type of content in the construction material which is positioned within range of the VSR, but it is also capable of determining the percentage of this content. Results show that the proposed microwave-based VSR sensor provides a cost-efficient and nondestructive solution for sensing the type and percentage of the contents in fiber-reinforced concretes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Abbas, Y.K. Yeow, A.H. Shaari, K. Khalid, J. Hassan, and E. Saion, IEEE Sens. J. 5, 1281 (2005).

    Article  Google Scholar 

  2. L. Yang, N. Bowler, and D.B. Johnson, IEEE Sens. J. 11, 5 (2011).

    Article  Google Scholar 

  3. C.L. Yang, C.S. Lee, K.W. Chen, and K.Z. Chen, IEEE Trans. Microw. Theory Technol. 64, 247 (2016).

    Article  Google Scholar 

  4. L. Chieh-Sen and C.L. Yang, IEEE Sens. J. 14, 695 (2014).

    Article  Google Scholar 

  5. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Article  Google Scholar 

  6. J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).

    Article  Google Scholar 

  7. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999).

    Article  Google Scholar 

  8. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  Google Scholar 

  9. S. Devadithya, A. Pedross-Engel, C.M. Watts, N.I. Landy, T. Driscoll, and M.S. Reynolds, IEEE Trans. Microw. Theory Technol. 65, 5096 (2017).

    Article  Google Scholar 

  10. T. Ali and B. Rajashekhar, Microw. Opt. Technol. Lett. J. 59, 1000 (2017).

    Article  Google Scholar 

  11. M. Bağmancı, M. Karaaslan, O. Altıntaş, F. Karadağ, E. Tetik, and M. Bakır, J. Microw. Power Electromagn. Energy 52, 45 (2018).

    Article  Google Scholar 

  12. V. Pacheco-Peña, I.V. Minin, O.V. Minin, and M. Beruete, IEEE Antennas Wirel. Propag. Lett. 16, 1460 (2017).

    Article  Google Scholar 

  13. W. Withayachumnankul and D. Abbott, IEEE Photon. J. 1, 99 (2008).

    Article  Google Scholar 

  14. M. Bakır, M. Karaaslan, O. Akgol, and C. Sabah, Opt. Quant. Electron. 49, 346 (2017).

    Article  Google Scholar 

  15. A.P. Saghati, J.S. Batra, J. Kameoka, and K. Entesari, IEEE Trans. Microw. Theory Technol. 65, 2558 (2017).

    Article  Google Scholar 

  16. B. Kapilevich and B. Litvak, IEEE Sens. J. 11, 2611 (2011).

    Article  Google Scholar 

  17. I.E. Carranza, J.P. Grant, J. Gough, and D. Cumming, IEEE J. Sel. Top. Quant. 23, 1 (2017).

    Article  Google Scholar 

  18. K. Saxena and K.S. Daya, Integr. Ferroelectr. 184, 50 (2017).

    Article  Google Scholar 

  19. D. Wu, Y. Liu, R. Li, L. Chen, R. Ma, C. Liu, and H. Ye, Nanoscale Res. Lett. 11, 483 (2016).

    Article  Google Scholar 

  20. M. Bakir, M. Karaaslan, F. Dincer, O. Akgol, and C. Sabah, Int. J. Mod. Phys. B. 30, 1650133 (2016).

    Article  Google Scholar 

  21. P. Vélez, L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martín, IEEE Sens. J. 17, 6589 (2017).

    Article  Google Scholar 

  22. G. Galindo-Romera, F.J. Herraiz-Martínez, M. Gil, J.J. Martínez-Martínez, and D. Segovia-Vargas, IEEE Sens. J 16, 3587 (2016).

    Article  Google Scholar 

  23. R.Y. Gerasimov, G.N. Fadeev, Y.V. Gerasimov, and E.A. Kondrakova, J. Phys. Conf. Ser. 731, 012005 (2016).

    Article  Google Scholar 

  24. J. Helander, A. Ericsson, M. Gustafsson, T. Martin, D. Sjöberg, and C. Larsson, IEEE Trans. Antennas Propag. 65, 5523 (2017).

    Article  Google Scholar 

  25. K. Sasaki, T. Katagiri, N. Yusa, and H. Hashizume, Mater. Trans. 58, 692 (2017).

    Article  Google Scholar 

  26. A. Beglarigale and H. Yazıcı, Const. B. Mat. 75, 255 (2015).

    Article  Google Scholar 

  27. P.H. Bischoff, ACI Struct. J. 114, 1067 (2017).

    Google Scholar 

  28. F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, Opt. Eng. 53, 107101 (2015).

    Article  Google Scholar 

  29. F. Karadağ, İ. Çömez, F. DinÇer, M. Bakır, and M. Karaaslan, Appl. Comput. Electron. 31, 8 (2016).

    Google Scholar 

  30. P.S. Neelakanta, Electron. Lett. 25, 800 (1989).

    Article  Google Scholar 

  31. M. Gil, J. Bonache, J. Selga, J. García-García, and F. Martin, IEEE Microw. Wirel. Compon. Lett. 17, 97 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karaaslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgol, O., Unal, E., Bağmancı, M. et al. A Nondestructive Method for Determining Fiber Content and Fiber Ratio in Concretes Using a Metamaterial Sensor Based on a V-Shaped Resonator. J. Electron. Mater. 48, 2469–2481 (2019). https://doi.org/10.1007/s11664-019-06937-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06937-w

Keywords

Navigation