Skip to main content
Log in

Effect of Silver and Iodine Co-doping on the Thermoelectric Properties of n-Type Bi2S3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bi2S3 is a promising thermoelectric material due to its low thermal conductivity. However, the low electrical conductivity has become an obstacle for its higher thermoelectric properties. To overcome this, on the basis of 1 mol.% BiI3 doping, Bi2S3 polycrystalline samples doped with various silver (Ag) concentrations were successfully prepared by melting combined with spark plasma sintering (SPS) to improve thermoelectric properties. The variation of lattice parameters were analyzed using x-ray diffraction, and electrical and thermal properties were investigated in the temperature range from 300 K to 723 K. The Ag and iodine (I) co-doping plays an important role in enhancing the electrical conductivity and maintaining a high Seebeck coefficient simultaneously. An ideal power factor of 3.95 μW cm−1 K−2 is obtained for the Ag0.0075Bi2S3 sample at 723 K. Meanwhile, the thermal conductivity is also reduced. As a result, a high thermoelectric figure-of-merit (ZT) of 0.62 is achieved, which is four times higher than that of pristine Bi2S3 at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Kanatzidis, Chem. Mater. 22, 648 (2009).

    Article  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  4. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  5. J. Yang, X.Z. Zhang, B.Z. Ge, J.N. Yan, G.W. Liu, Z.Q. Shi, and G.J. Qiao, Ceram. Int. 43, 15275 (2017).

    Article  Google Scholar 

  6. M. Zebarjadi, B. Liao, K. Esfarjani, M. Dresselhaus, and G. Chen, Adv. Mater. 25, 1577 (2013).

    Article  Google Scholar 

  7. J. Yang, G.W. Liu, J.N. Yan, X.Z. Zhang, Z.Q. Shi, and G.J. Qiao, J. Alloys Compd. 728, 351 (2017).

    Article  Google Scholar 

  8. J. Yang, G.W. Liu, Z.Q. Shi, J.P. Lin, X. Ma, Z.W. Xu, and G.J. Qiao, Mater. Today Energy 3, 72 (2017).

    Article  Google Scholar 

  9. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, and G.J. Snyder, Science 554, 321 (2008).

    Google Scholar 

  10. Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).

    Article  Google Scholar 

  11. A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong, Nano Lett. 12, 1203 (2012).

    Article  Google Scholar 

  12. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  13. G.Q. Zhang, B. Kirk, L.A. Jauregui, H.R. Yang, X.F. Xu, Y.P. Chen, and Y. Wu, Nano Lett. 12, 56 (2012).

    Article  Google Scholar 

  14. S.N. Girard, J.Q. He, X.Y. Zhou, D. Shoemarker, C.M. Christopher, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).

    Article  Google Scholar 

  15. Y. He, T. Day, T.S. Zhang, H.L. Liu, X. Shi, L.D. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).

    Article  Google Scholar 

  16. Z.H. Ge, B.P. Zhang, Y.X. Chen, Z.X. Yu, Y. Liu, and J.F. Li, Chem. Commun. 47, 12697 (2011).

    Article  Google Scholar 

  17. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, and G. Chen, NanoLett. 8, 4670 (2008).

    Article  Google Scholar 

  18. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  19. N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).

    Article  Google Scholar 

  20. J. Li, Q. Tan, and J.F. Li, J. Alloys Compd. 551, 143 (2013).

    Article  Google Scholar 

  21. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  22. P. Boudjouk, M.P. Remington, D.G. Grier, B.R. Jarabek, and G.J. McCarthy, Inorg. Chem. 37, 3538 (2008).

    Article  Google Scholar 

  23. Z.H. Ge, B.P. Zhang, Y. Liu, and J.F. Li, Phys. Chem. Chem. Phys. 14, 4475 (2012).

    Article  Google Scholar 

  24. S.C. Liufu, L.D. Chen, D. Yao, and C.F. Wang, Appl. Phys. Lett. 90, 112106 (2007).

    Article  Google Scholar 

  25. H. Mizoguchi, H. Hosono, N. Ueda, and H. Kawazoe, J. Appl. Phys. 78, 1376 (1995).

    Article  Google Scholar 

  26. Z.H. Ge, B.P. Zhang, Y.Q. Yu, and P.P. Shang, J. Alloys Compd. 514, 205 (2012).

    Article  Google Scholar 

  27. Y.Q. Yu, B.P. Zhang, Z.H. Ge, P.P. Shang, and Y.X. Chen, Mater. Chem. Phys. 131, 216 (2011).

    Article  Google Scholar 

  28. Tarachand, V. Sharma, R. Bhatt, V. Ganesan, and G.S. Okram, Nano Res. 9, 3291 (2016).

    Article  Google Scholar 

  29. F. Han, H. Liu, C.D. Malliakas, M. Sturza, D.Y. Chung, X. Wan, and M.G. Kanatzidis, Inorg. Chem. 55, 3547 (2016).

    Article  Google Scholar 

  30. P. Tomes, X. Yan, R. Kastner, R. Svagera, M. Waas, J. Eilertsen, A. Weidenkaff, and S. Paschen, J. Alloys Compd. 654, 300 (2016).

    Article  Google Scholar 

  31. K. Biswas, L.D. Zhao, and M.G. Kanatzidis, Adv. Energy Mater. 2, 634 (2012).

    Article  Google Scholar 

  32. L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, and W.S. Liu, Solid State Sci. 10, 651 (2008).

    Article  Google Scholar 

  33. H.W. Zhao, X.X. Xu, C. Li, R. Tian, R.Z. Zhang, R. Huang, Y.N. Lyu, D.X. Li, X.H. Hu, L. Pan, and Y.F. Wang, J. Mater. Chem. A 5, 23267 (2017).

    Article  Google Scholar 

  34. G.P. Srivastava, Rep. Prog. Phys. 78, 026501 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51572111), the National Key Research and Development Program of China (2017YFB0310402), the Six Talent Peaks Project of Jiangsu Province (TD-XCL-004), the 333 talents project of Jiangsu province (BRA2017387), the Innovation/Entrepreneurship Program of Jiangsu Province ([2015]26), and the Qing Lan Project of Jiangsu Province ([2016]15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiwu Liu or Guanjun Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Yang, J., Ge, B. et al. Effect of Silver and Iodine Co-doping on the Thermoelectric Properties of n-Type Bi2S3. J. Electron. Mater. 48, 503–508 (2019). https://doi.org/10.1007/s11664-018-6741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6741-4

Keywords

Navigation