Skip to main content

Advertisement

Log in

Lithium Battery Transient Response as a Diagnostic Tool

  • Topical Collection: Electronic Materials for Renewable Energy Applications
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium batteries are currently used as the main energy storage for electronic devices. Progress in the field of portable electronic devices is significantly determined by the improvement of their weight/dimensional characteristics and specific capacity. In addition to the high reliability required of lithium batteries, in some critical applications proper diagnostics are required. Corresponding techniques allow prediction and prevention of operation interruption and avoidance of expensive battery replacement, and also provide additional benefits. Many effective diagnostic methods have been suggested; however, most of them require expensive experimental equipment, as well as interruption or strong perturbation of the operating mode. In the framework of this investigation, a simple diagnostic method based on analysis of transient processes is proposed. The transient response is considered as a reaction to an applied load variation that typically corresponds to normal operating conditions for most real applications. The transient response contains the same information as the impedance characteristic for the system operating in linear mode. Taking into account the large number of publications describing the impedance response associated with diagnostic methods, it can be assumed that the transient response contains a sufficient amount of information for creation of effective diagnostic systems. The proposed experimental installation is based on a controlled load, providing current variation, measuring equipment, and data processing electronics. It is proposed to use the second exponent parameters U2 and β to estimate the state of charge for secondary lithium batteries. The proposed method improves the accuracy and reliability of a set of quantitative parameters associated with electrochemical energy sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources 226, 272 (2013).

    Article  Google Scholar 

  2. K. Buss, P. Wrobel, and Ch. Doetsch, Int. J. Sustain. Energy Plan. Manag. 9, 31 (2016).

    Google Scholar 

  3. H. He, X. Zhang, R. Xiong, Y. Xu, and H. Guo, Energy 39, 310 (2012).

    Article  Google Scholar 

  4. L. Sanier, R. Bouchet, M. Rosso, and J.-M. Tarascon, J. Power Sources 158, 564 (2006).

    Article  Google Scholar 

  5. Ch. Lin, A. Tanga, and W. Wang, Energy Procedia 75, 1920 (2015).

    Article  Google Scholar 

  6. S. Martemianov, N. Adiutanov, Yu.K. Evdokimov, L. Madier, F. Maillard, and A. Thomas, J. Solid State Electrochem. 19, 2803 (2015).

    Article  Google Scholar 

  7. E.S. Denisov, Yu.K. Evdokimov, S. Martemianov, A. Thomas, and N. Adiutantov, Fuel Cells 17, 225 (2017).

    Article  Google Scholar 

  8. M.A. Rubio, K. Bethune, A. Urquia, and J. St-Pierre, Int. J. Hydrogen Energy 41, 14991 (2016).

    Article  Google Scholar 

  9. Yu.K. Evdokimov and E. Denisov, Proc. SPIE 8787, 87870E (2013).

    Article  Google Scholar 

  10. Yu.K. Evdokimov, E. Denisov, and S. Martemianov, Nonlinear World 7, 706 (2009).

    Google Scholar 

  11. X. Yuan, H. Wang, J.C. Sun, and J. Zhang, Int. J. Hydrogen Energy 32, 4365 (2007).

    Article  Google Scholar 

  12. E.S. Denisov, Nonlinear World 6, 483 (2008).

    Google Scholar 

  13. E.-M. Hammer, B. Berger, and L. Komsiyska, Int. J. Renew. Energy Dev. 3, 7 (2014).

    Google Scholar 

  14. K.R. Cooper and M. Smith, J. Power Sources 160, 1088 (2006).

    Article  Google Scholar 

  15. P. Boskoski, A. Debenjak, and B.M. Boshkoska, Fast Electrochemical Impedance Spectroscopy as a Statistical Condition Monitoring Tool (SpringerBriefs in Applied Sciences and Technology) (New York: Springer, 2017), p. 83.

    Book  Google Scholar 

  16. G. Timergalina, T. Nikishin, E.S. Denisov, and R.R. Nigmatullin, in Systems of Signal Synchronization, Generating and Processing in Telecommunications (2017), pp. 1–5.

  17. D. Taylor, T.I. Pritchard, I.C. Butler, and P.S.A. Evans, Analog Integr. Circ. Signal Process. 8, 201 (1995).

    Article  Google Scholar 

  18. H.-G. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, and P. Birke, Sensors 10, 5604 (2010).

    Article  Google Scholar 

  19. V.G. Kumar, N. Munichandraiah, and A.K. Shukla, J. Power Sources 63, 203 (1996).

    Article  Google Scholar 

  20. R.R. Nigmatullin, D. Baleanu, E. Dinch, Z. Ustundag, A.O. Solak, and R.V. Kargin, J. Comput. Theor. Nanosci. 7, 1 (2010).

    Article  Google Scholar 

  21. M.L. Ciurea, S. Lazanu, I. Stavaracher, A.-M. Lepadatu, V. Iancu, M.R. Mitroi, R.R. Nigmatullin, and C.M. Baleanu, J. Appl. Phys. 109, 013717 (2011).

    Article  Google Scholar 

  22. W. Ait Ahmed, M. Aggour, and F. Bennani, J. Energy Syst. 1, 56 (2017).

    Article  Google Scholar 

  23. N. Adhikari, B. Singh, and A. Lal Vyas, Int. J. Renew. Energy Technol. 6, 65 (2015).

    Article  Google Scholar 

  24. V.H. Johnson, A.A. Pesaran, and T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries (Golden: National Renewable Energy Laboratory, 2001).

    Google Scholar 

  25. A. Rahmoun and H. Biechl, Przegl. Elektrotech. 88, 152 (2012).

    Google Scholar 

  26. L. Wang, J. Zhao, X. He, J. Gao, J. Li, Ch. Wan, and Ch. Jiang, Int. J. Electrochem. Sci. 7, 345 (2012).

    Google Scholar 

  27. G. Babu, N. Kalaiselvi, and D. Bhuvaneswari, J. Electron. Mater. 43, 1062 (2014).

    Article  Google Scholar 

  28. J. Zhu, K. Zeng, and L. Lu, Metall. Mater. Trans. A 44, 26 (2013).

    Article  Google Scholar 

  29. Y. Zhang, Ch.-Y. Wang, and X. Tang, J. Power Sources 196, 1513 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Denisov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, E., Nigmatullin, R., Evdokimov, Y. et al. Lithium Battery Transient Response as a Diagnostic Tool. J. Electron. Mater. 47, 4493–4501 (2018). https://doi.org/10.1007/s11664-018-6346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6346-y

Keywords

Navigation