Skip to main content
Log in

Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is <l/38 with respect to the operation frequencies. The surface electric field and current distributions of the unit-cell structure reveal the physical picture of the dual-band absorption. Numerical simulations demonstrate that the PMMA could retain high absorption level at large angles of polarization and incidence for both transverse electric (TE) and transverse magnetic (TM) modes. Furthermore, the absorption properties of the PMMA can be adjusted by varying the geometric parameters of the unit-cell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (New York: Springer, 2009), p. 15.

    Google Scholar 

  2. T.J. Cui, R.S. David, and R. Liu, Metamaterials: Theory, Design, and Applications (New York: Springer, 2010), p. 4.

    Book  Google Scholar 

  3. P.V. Parimi, W.T. Lu, P. Vodo, and S. Sridha, Nature 426, 404 (2003).

    Article  Google Scholar 

  4. R.A. Shelby, D.R. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  Google Scholar 

  5. N.T. Tung, V.D. Lam, J.W. Park, M.H. Cho, J.Y. Rhee, W.H. Jang, and Y.P. Lee, J. Appl. Phys. 106, 053109 (2009).

    Article  Google Scholar 

  6. Y.Z. Cheng, Y. Nie, and R.Z. Gong, Eur. Phys. J. B 85, 62 (2012).

    Article  Google Scholar 

  7. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, Science 314, 977 (2006).

    Article  Google Scholar 

  8. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  9. Y.Q. Ye, Y. Jin, and S.L. He, JOSA B 27, 498 (2010).

    Article  Google Scholar 

  10. Y.Z. Cheng, H.L. Yang, Z.Z. Cheng, and N. Wu, Appl. Phys. A 102, 99 (2011).

    Article  Google Scholar 

  11. C.M. Watts, X. Liu, and W.J. Padilla, Adv. Mater. 24, 98 (2012).

    Google Scholar 

  12. Z.W. Mao, S.L. Liu, B.R. Bian, B.Y. Wang, B. Ma, L. Chen, and J. Xu, J. Appl. Phys. 115, 204505 (2014).

    Article  Google Scholar 

  13. Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, and D.R.S. Cumming, Opt. Lett. 36, 945 (2011).

    Article  Google Scholar 

  14. Y.Z. Cheng, Y. Nie, and R.Z. Gong, Opt. Laser Technol. 8, 415 (2013).

    Article  Google Scholar 

  15. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, Appl. Phys. Lett. 99, 253104 (2011).

    Article  Google Scholar 

  16. W. Ma, Y.Z. Wen, and X.M. Yu, Opt. Express 21, 30724 (2013).

    Article  Google Scholar 

  17. D. Xiao, K.Y. Tao, and Q. Wang, Plasmonics 11, 389 (2016).

    Article  Google Scholar 

  18. G.M. Akselrod, J. Huang, T.B. Hoang, P.T. Bowen, L. Su, D.R. Smith, and M.H. Mikkelsen, Adv. Mater. 27, 8028 (2015).

    Article  Google Scholar 

  19. Y.Z. Cheng, X.S. Mao, C. Wu, L. Wu, and R.Z. Gong, Opt. Mater. 53, 195–200 (2016).

    Article  Google Scholar 

  20. M. Li, H.L. Yang, X.W. Hou, Y. Tian, and D.Y. Hou, Prog. Electromagn. Res. 108, 37 (2010).

    Article  Google Scholar 

  21. J. Lee and S, Lim. Electron. Lett. 47, 8 (2011).

    Article  Google Scholar 

  22. X.P. Shen, Y. Yang, Y. Zang, J. Gu, and J. Han, Appl. Phys. Lett. 101, 154102 (2012).

    Article  Google Scholar 

  23. H.X. Xu, G.M. Wang, M.Q. Qi, J.G. Liang, J.Q. Gong, and Z.M. Xu, Phys. Rev. B 86, 205104 (2013).

    Google Scholar 

  24. Y.Z. Cheng, R.Z. Gong, and Y. Nie, Appl. Phys. B 111, 483 (2013).

    Article  Google Scholar 

  25. Y.B. Ma, H.W. Zhang, Y.X. Li, Y.C. Wang, W.E. Lai, and J. Li, Chin. Phys. B 23, 58102 (2014).

    Article  Google Scholar 

  26. B. Yang, Z. Li, D.Q. Ju, Y.Y. Jiang, and L.H. Liu, Opt. Express 23, 8670 (2015).

    Article  Google Scholar 

  27. A. Osman, R.K.A. Mohamad, A.M. Noor, A.S. Noor, Z. Farid, and A.M. Huda, Appl. Phys. A 123, 63 (2017).

    Google Scholar 

  28. J.Y. Young, J.K. Young, T.P. Van, Y.R. Joo, W.K. Ki, H.J. Won, Y.H. Kim, H. Cheong, and Y.P. Lee, Opt. Express 21, 32484 (2013).

    Article  Google Scholar 

  29. B.X. Wang, G.Z. Wang, and T. Sang, J. Phys. D Appl. Phys. 49, 165307 (2016).

    Article  Google Scholar 

  30. D. Hu, H.Y. Wang, Z.J. Tang, X.X. Zhang, and Q.F. Zhu, Appl. Phys. A 122, 826 (2016).

    Article  Google Scholar 

  31. S.J. Kim, Y.J. Yoo, Y.J. Kim, and Y.P. Lee, Opt. Commun. 382, 151 (2017).

    Article  Google Scholar 

  32. D.J. Lee, J.G. Hwang, D. Lim, T. Hara, and S.J. Lim, Sci. Rep. 6, 27155 (2016).

    Article  Google Scholar 

  33. J.C. Zhao and Y.Z. Cheng, J. Electron. Mater. 44, 4269 (2016).

    Google Scholar 

  34. Y.Z. Cheng, B. He, J.C. Zhao, and R.Z. Gong, J. Electron. Mater. 46, 1293 (2017).

    Article  Google Scholar 

  35. Y.Z. Cheng, R.Z. Gong, and Z.Z. Cheng, Opt. Commun. 361, 41 (2016).

    Article  Google Scholar 

  36. B.X. Wang and G.Z. Wang, Appl. Phys. Express 10, 034301 (2017).

    Article  Google Scholar 

  37. Z. Liao, Y. Luo, A.I. Fernández-Domínguez, X.P. Shen, S.A. Maier, and T.J. Cui, Sci. Rep. 5, 9590 (2015).

    Article  Google Scholar 

  38. D. Govind and S.A. Ramakrishna, J. Opt. 16, 094016 (2014).

    Article  Google Scholar 

  39. I. Kota, H. Toshiyoshi, and H. Iizuka, J. Appl. Phys. 119, 063101 (2016).

    Article  Google Scholar 

  40. M. Maeda, IEEE Trans. Microw. Theory Tech. 20, 390 (1972).

    Article  Google Scholar 

  41. Y.Z. Cheng, M.L. Huang, H. Chen, Z. Guo, X. Mao, and R. Gong, Materials 10, 591 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61605147), the Science and Technology Program of Henan Province (Grant No. 142300410195), and the Natural Science Foundation of Hubei Province (Grant No. 2017CFB588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Cheng, Y.Z. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure. J. Electron. Mater. 47, 323–328 (2018). https://doi.org/10.1007/s11664-017-5770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5770-8

Keywords

Navigation