Skip to main content
Log in

The Influence of Primary Cu6Sn5 Size on the Shear Impact Properties of Sn-Cu/Cu BGA Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A method is presented to control the size of primary Cu6Sn5 in ball grid array (BGA) joints while keeping all other microstructural features near-constant, enabling a direct study of the size of primary Cu6Sn5 on impact properties. For Sn-2Cu/Cu BGA joints, it is shown that larger primary Cu6Sn5 particles have a clear negative effect on the shear impact properties. Macroscopic fracture occurred by a combination of the brittle fracture of embedded primary Cu6Sn5 rods and ductile fracture of the matrix βSn. Cleavage of the Cu6Sn5 rods occurred mostly along (0001) or perpendicular to (0001) with some crack deflection between the two. The deterioration of shear impact properties with increasing Cu6Sn5 size is attributed to (1) the larger microcracks introduced by the brittle fracture of larger embedded Cu6Sn5 crystals, and (2) the less numerous and more widely spaced rods when the Cu6Sn5 crystals are larger, which makes them poor strengtheners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frear, D. Grivas, and J. Morris, J. Electron. Mater. 16, 181 (1987).

    Article  Google Scholar 

  2. Y. Tian, R. Zhang, C. Hang, L. Niu, and C. Wang, Mater. Charact. 88, 58 (2014).

    Article  Google Scholar 

  3. J.W. Xian, S.A. Belyakov, and C.M. Gourlay, J. Electron. Mater. 45, 69 (2016).

    Article  Google Scholar 

  4. C.M. Gourlay, S.A. Belyakov, Z.L. Ma, and J.W. Xian, JOM 67, 2383 (2015).

    Article  Google Scholar 

  5. Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, J. Alloy. Compd. 682, 326 (2016).

    Article  Google Scholar 

  6. M.A.A. Mohd Salleh, S.D. McDonald, C.M. Gourlay, S.A. Belyakov, H. Yasuda, and K. Nogita, J. Electron. Mater. 45, 154 (2016).

    Article  Google Scholar 

  7. M. Yang, Y. Cao, S. Joo, H. Chen, X. Ma, and M. Li, J. Alloy. Compd. 582, 688 (2014).

    Article  Google Scholar 

  8. Z. Zhang, H. Cao, H. Yang, M. Li, and Y. Yu, J. Electron. Mater. 45, 5985 (2016).

    Article  Google Scholar 

  9. M. Li, Z. Zhang, and J. Kim, Appl. Phys. Lett. 98, 201901 (2011).

    Article  Google Scholar 

  10. R. Gagliano and M.E. Fine, JOM 53, 33 (2001).

    Article  Google Scholar 

  11. H.L.J. Pang, K.H. Tan, X.Q. Shi, and Z.P. Wang, Mater. Sci. Eng. A 307, 42 (2001).

    Article  Google Scholar 

  12. Q. Zhang, J. Tan, and Z. Zhang, J. Appl. Phys. 110, 014502 (2011).

    Article  Google Scholar 

  13. J. Wang and H. Nishikawa, Microelectron. Reliab. 54, 1583 (2014).

    Article  Google Scholar 

  14. L. Ching-Tsung, H. Chi-Shiung, C. Tao-Chih, and L. Ming-Kann, in proccedings of 2007 International Microsystems, Packaging, Assembly and Circuits Technology, 2007. pp. 58–61.

  15. S.M. Hayes, N. Chawla, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  Google Scholar 

  16. H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, Mater. Sci. Eng. A 358, 134 (2003).

    Article  Google Scholar 

  17. Y.C. Chan, A.C.K. So, and J.K.L. Lai, Mater. Sci. Eng. B 55, 5 (1998).

    Article  Google Scholar 

  18. L. Quan, D. Frear, D. Grivas, and J.W. Morris, J. Electron. Mater. 16, 203 (1987).

    Article  Google Scholar 

  19. Y.-H. Lee and H.-T. Lee, Mater. Sci. Eng. A 444, 75 (2007).

    Article  Google Scholar 

  20. A. Hirose, H. Yanagawa, E. Ide, and K.F. Kobayashi, Sci. Technol. Adv. Mat. 5, 267 (2004).

    Article  Google Scholar 

  21. S. Ahat, M. Sheng, and L. Luo, J. Electron. Mater. 30, 1317 (2001).

    Article  Google Scholar 

  22. X. Li, F. Li, F. Guo, and Y. Shi, J. Electron. Mater. 40, 51 (2011).

    Article  Google Scholar 

  23. J.-W. Yoon, S.-W. Kim, and S.-B. Jung, J. Alloy. Compd. 391, 82 (2005).

    Article  Google Scholar 

  24. Y. Tian, W. Liu, R. An, W. Zhang, L. Niu, and C. Wang, J. Mater. Sci. Mater. Electron. 23, 136 (2012).

    Article  Google Scholar 

  25. K. Kim, S. Huh, and K. Suganuma, J. Alloy. Compd. 352, 226 (2003).

    Article  Google Scholar 

  26. L. Jiang and N. Chawla, Scr. Mater. 63, 480 (2010).

    Article  Google Scholar 

  27. J. Yu, J. Wu, L. Yu, and C. Kao, in proceedings of the 66th Electronic Components and Technology Conference (ECTC), 2016, IEEE. pp. 1135–1140

  28. J. Yu, J. Wu, L. Yu, and C. Kao, in proceedings of the Electronic Packaging and iMAPS All Asia Conference, 2015. pp. 838–841.

  29. D. Mu, H. Huang, S. McDonald, J. Read, and K. Nogita, Mater. Sci. Eng. 566, 126 (2013).

    Article  Google Scholar 

  30. D. Mu, S. McDonald, J. Read, H. Huang, and K. Nogita, Curr. Opin. Solid State Mater. Sci. 20, 55 (2016).

    Article  Google Scholar 

  31. B. Philippi, K. Matoy, J. Zechner, C. Kirchlechner, and G. Dehm, Scr. Mater. 123, 38 (2016).

    Article  Google Scholar 

  32. M. Wang, J. Wang, H. Feng, and W. Ke, Mater. Sci. Eng. A 558, 649 (2012).

    Article  Google Scholar 

  33. K. Kim, S. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002).

    Article  Google Scholar 

  34. F. Ochoa, J. Williams, and N. Chawla, JOM 55, 56 (2003).

    Article  Google Scholar 

  35. D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.-K. Choi, D.-Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 17, 2775 (2002).

    Article  Google Scholar 

  36. I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009).

    Article  Google Scholar 

  37. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Mater. Sci. Eng. A 527, 2588 (2010).

    Article  Google Scholar 

  38. Z.L. Ma and C.M. Gourlay, J. Alloy. Compd. 706, 596 (2017).

    Article  Google Scholar 

  39. S.K. Kang, D.-Y. Shih, N. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.C. Goldsmith, K.J. Puttlitz, and W.K. Choi, JOM 55, 61 (2003).

    Article  Google Scholar 

  40. J. Xian, S. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, and C. Gourlay, Acta Mater. 126, 540 (2017).

    Article  Google Scholar 

  41. J. Xian, S. Belyakov, T. Britton, and C. Gourlay, J. Alloy. Compd. 619, 345 (2015).

    Article  Google Scholar 

  42. Thermo-Calc, TCSLD Database version 3.0.(2015).

  43. JESD22-B117B ‘Solder Ball Shear’

  44. B. Peplinski, G. Schulz, D. Schultze, and E. Schierhorn, Mater. Sci. Forum 228, 577 (1996).

    Article  Google Scholar 

  45. K. Nogita, C. Gourlay, and T. Nishimura, JOM 61, 45 (2009).

    Article  Google Scholar 

  46. A. Telang and T. Bieler, JOM 57, 44 (2005).

    Article  Google Scholar 

  47. T.R. Bieler and T.-K. Lee, Lead free solder review, in Encyclopedia of Materials: Science and Technology ed. By K. H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernard Ilschner (Amsterdam: Elsevier, 2010), pp. 1–12.

  48. L. Lehman, Y. Xing, T. Bieler, and E. Cotts, Acta Mater. 58, 3546 (2010).

    Article  Google Scholar 

  49. B. Arfaei, N. Kim, and E. Cotts, J. Electron. Mater. 41, 362 (2012).

    Article  Google Scholar 

  50. J. Xian, Z. Ma, S. Belyakov, M. Ollivier, and C. Gourlay, Acta Mater. 123, 404 (2017).

    Article  Google Scholar 

  51. S. Belyakov, J. Xian, K. Sweatman, T. Nishimura, T. Akaiwa, and C. Gourlay, J. Alloy. Compd. 701, 321 (2017).

    Article  Google Scholar 

  52. H. Tsukamoto, T. Nishimura, S. Suenaga, and K. Nogita, Mater. Sci. Eng. B 171, 162 (2010).

    Article  Google Scholar 

  53. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, and K. Nogita, Microelectron. Reliab. 51, 657 (2011).

    Article  Google Scholar 

  54. Z.H. Zhang, M.Y. Li, Z.Q. Liu, and S.H. Yang, Acta Mater. 104, 1 (2016).

    Article  Google Scholar 

  55. D. Mu, H. Huang, S.D. McDonald, J. Read, and K. Nogita, Mater. Sci. Eng. 566, 126 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded, in part, by Nihon Superior Co., Ltd. and UK EPSRC Grant No. EP/M002241/1. We thank Prof. T.C. Lindley for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.Q., Belyakov, S.A., Xian, J.W. et al. The Influence of Primary Cu6Sn5 Size on the Shear Impact Properties of Sn-Cu/Cu BGA Joints. J. Electron. Mater. 47, 84–95 (2018). https://doi.org/10.1007/s11664-017-5763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5763-7

Keywords

Navigation