Skip to main content

Advertisement

Log in

Real-Time Determination of Solar Cell Parameters

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The extraction of solar cell parameters is a difficult task but is an important step in the assessment procedure of solar cells and panels. This work presents numerical methods for determining these parameters and compares their performances under different solar irradiances when they are implemented in an equivalent electrical circuit model with one or two diodes. To obtain a fast convergence rate in real-time applications, the fractional-order Darwinian particle swarm optimization (FODPSO) method is used through experimental data collected from a platform of photovoltaic (PV) energy installed near the modeling, information and systems laboratory at Amiens, France. The results showed that the one-diode model is less representative than the two-diode model. Furthermore, it is envisaged that the proposed FODPSO-based extraction method is more effective in modeling with two diodes. This will allow real-time determination of solar cells parameters and consequently will help to select the most suitable PV model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

T :

Cell temperature (°C)

G :

Global irradiation on the array surface (W/m2)

T :

Time (s)

STC:

Standard test condition of the PV cell; T STC = 25°C and GSTC = 1000 W/m2

PV:

Photovoltaic

IV :

Current voltage

PV :

Power voltage

PSO:

Particle swarm optimization

DPSO:

Darwinian particle swarm optimization

FODPSO:

Fractional-order Darwinian particle swarm optimization

1D:

One diode model

2D:

Two diode model

q :

Electron charge (1.6 × 10−19 C)

K :

Boltzmann constant (1.38 × 10−23 Nm/K)

I PV :

Light generated current of a PV module (A)

I :

PV module current (A)

V :

PV module voltage (V)

I MPP :

Maximum power point current (A)

V MPP :

Maximum power point voltage (V)

I SC :

Short-circuit current (A)

V OC :

Open-circuit voltage (V)

V T1 :

Thermodynamic voltage of diode 1 (V)

V T2 :

Thermodynamic voltage of diode 2 (V)

a, a 1, a 2 :

Ideality factors of the cell

I 0 / I 01, I 02 :

Saturation currents of cell for 1Diode model/2Diode model (A)

R S :

Series resistance of diode model (Ω)

R P :

Parallel resistance of diode model (Ω)

V :

Speed of a particle V (k) in the generation k

X :

Current position of the particle

X i :

Best known position of each particle

X g :

Best known position of swarm

Ω :

Hyperparameter (inertia factor)

α T, β T :

Vectors drawn in [0, 1]n with uniform probability

T NOCT :

Normal operating cell temperature (°C)

K I :

Temperature coefficient of short-circuit current (%/°C)

K V :

Temperature coefficient of open-circuit voltage (mV/°C)

ΔT :

Difference between actual temperature and T STC (°C)

N s :

Number of cells connected in series

References

  1. B. Paridan, D. Iniyan, and R. Goic, J. Renew Sustain Energy Rev. (2010). doi:10.1016/j.rser.2010.11.032.

    Google Scholar 

  2. M. Hejri, H. Mokhtari, M. Reza Azizian, M. Ghandhari, and L. Soder, IEEE J. Photovolt. (2014). doi:10.1109/JPHOTOV.2014.2307161.

    Google Scholar 

  3. J.A. Ramos-Hernanz, J.J. Campayo, J. Larranaga, E. Zulueta, O. Barambones, J. Motrico, U. Fernandez Gamiz, and I. Zamora, J Sol Energy (2010). doi:10.1016/j.solener.2010.11.005.

    Google Scholar 

  4. E. Matagne, R. Chenni, and R. El Bachtiri, Power Eng. (2007). doi:10.1109/POWERENG.2007.4380173.

    Google Scholar 

  5. R. Banos, F. Manzano-Agugliaro, F.G. Montoya, and J. Gomez, J. Renew Sustain Energy Rev. (2010). doi:10.1016/j.rser.2010.12.008.

    Google Scholar 

  6. D. Olivia, E. Cuevas, and G. Pajares, Appl. Energy (2014). doi:10.1016/j.energy.2014.05.011.

    Google Scholar 

  7. M. Zagrouba, A. Sellami, M. Bouaicha, and M. Ksouri, Sol. Energy (2010). doi:10.1016/j.solener.2010.02.012.

    Google Scholar 

  8. A. Askarzadeh and A. Rezazadeh, Appl. Energy (2012). doi:10.1016/j.apenergy.2012.09.052.

    Google Scholar 

  9. B. Chitti Babu and S. Gurjar, IEEE J. Photovolt. (2014). doi:10.1109/JPHOTOV.2014.2316371.

    Google Scholar 

  10. M.G. Villalva, J.R. Gazoli, and E.R. Filho, IEEE Trans. Power Electron. (2009). doi:10.1109/TPEL.2009.2013862.

    Google Scholar 

  11. E.Q.B. Macabebe, C.J. Sheppard, and E.E. van Dyk, Sol. Energy (2010). doi:10.1016/j.solener.2010.11.005.

    Google Scholar 

  12. K. Ishaque, Z. Salam, and H. Taheri, Sol. Energy Mater. Sol. Cells (2010). doi:10.1016/j.solmat.2010.09.023.

    Google Scholar 

  13. K. Ishaque, Z. Salman, and H. Taheri, Power Electron. Drives Energy Syst. (2011). doi:10.1109/PEDES.2010.5712374.

    Google Scholar 

  14. C. Carrero, J. Rodríguez, D. Ramírez, and C. Platero, Renewable Energy (2009). doi:10.1016/j.renene.2009.10.025.

    Google Scholar 

  15. M. Davarifar, A. Rabhi, A. El Hajjaji, and M. Dahmane, Int. Conf. Syst. Control (2013). doi:10.1109/ICoSC.2013.6750940.

    Google Scholar 

  16. S. Sheik Mohammed, Int. J. Civ. Environ. Eng. 2, 5 (2011).

    Google Scholar 

  17. B. Amrouche, N. Belhaouas, S. Achachera, and M. Tahar Boukadoum, Int. J. Hydrogen Energy (2016). doi:10.1016/j.ijhydene.2016.04.147.

    Google Scholar 

  18. R. Poli, J. Kennedy, and T. Blackwell, Swarm Intell. (2007). doi:10.1007/s11721-007-0002-0.

    Google Scholar 

  19. M.S. Couceiro, R.P. Rocha, and N.M.F. Ferreira, SIViP (2012). doi:10.1007/s11760-012-0316-2.

    Google Scholar 

  20. A. Chouder, S. Silvestre, N. Sadaoui, and L. Rahmani, Simul. Model. Pract. Theory (2011). doi:10.1016/j.simpat.2011.08.011.

    Google Scholar 

  21. H.L. Tsai and J.M. Lin, J. Electron. Mater. (2010). doi:10.1007/s11664-009-0994-x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hassan Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan Ali, M., Rabhi, A., Haddad, . et al. Real-Time Determination of Solar Cell Parameters. J. Electron. Mater. 46, 6535–6543 (2017). https://doi.org/10.1007/s11664-017-5697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5697-0

Keywords

Navigation