Skip to main content
Log in

Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2016

Abstract

The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical–mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Boufayed, S. Leroy, G. Teysskdre, C. Laurent, P. SCgur, L.A. Dissado, and G.C. Montanari, ISEIM 2, 340 (2005).

    Google Scholar 

  2. S. Le Roy, P. Segur, G. Teyssedre, and C. Laurent, J. Phys. D Appl. Phys. 37, 298 (2004).

    Article  Google Scholar 

  3. G. Chen and Z. Xu, J. Phys: Conf. Ser. (2008). doi:10.1088/1742-6596/142/1/012008.

    Google Scholar 

  4. G.C. Montanari, C. Laurent, G. Teyssedre, A. Campus, and U.H. Nilsson, IEEE Trans. Dielectr. Electr. Insul. 12, 438 (2005).

    Article  Google Scholar 

  5. F. Boufayed, G. Teyssedre, C. Laurent, S. Le Roy, L.A. Dissado, P. Segur, and G.C. Montanari, J. Appl. Phys. 100, 104105 (2006).

    Article  Google Scholar 

  6. T. Tanaka, T. Okamoto, K. Nakanishi, and T. Miyamoto, IEEE Trans. Electr. Insul. 28, 826 (1993).

    Article  Google Scholar 

  7. J.M. Alison and R. Hill, J. Phys. D Appl. Phys. 27, 1291 (1994).

    Article  Google Scholar 

  8. F. Rogti, J. Electron. Mater. 44, 4655 (2015).

    Article  Google Scholar 

  9. G. Chen, J. Zhao, S. Li, and L. Zhong, Appl. Phys. Lett. 100, 222904 (2012).

    Article  Google Scholar 

  10. C. Zhou and G. Chen, High Volt. Eng. 41, 1167 (2015).

    Google Scholar 

  11. F. Rogti, J. Electrostat. 71, 1046 (2013).

    Article  Google Scholar 

  12. F. Rogti and M. Ferhat, Appl. Phys. Lett. 104, 031605 (2014). doi:10.1063/1.4862061.

    Article  Google Scholar 

  13. H. Boukhari and F. Rogti, Trans. Electr. Electron. Mater. 16, 107 (2015).

    Article  Google Scholar 

  14. L.A. Dissado, S. Zadeh, and J.C. Fothergill, in IEEE Conference on Electrical Insulation and Dielectric Phenomena (2007), p. 425.

  15. K. Matsui, Y. Tanaka, T. Takada, and T. Maeno, IEEE Trans. Dielectr. Electr. Insul. 15, 841 (2008).

    Article  Google Scholar 

  16. M. Fukuma, M. Nago, and M. Kosaki, in 4th International Conference on Properties and Applications of Dielectric Materials (1994).

  17. E. Belgaroui, I. Boukhris, A. Kallel, G. Teyssedre, and C. Laurent, J. Phys. D Appl. Phys. 40, 6760 (2007).

    Article  Google Scholar 

  18. K. Kaneko, Y. Suzuoki, and T. Mizutani, IEEE Trans. Dielectr. Electr. Insul. 6, 152 (1999).

  19. L. Zhang, Y. Zhou, J. Tian, Y. Sha, and Y. Zhang, J. Electrostat. 72, 252 (2014).

    Article  Google Scholar 

  20. I. Boukhris, E. Belgaroui, and A. Kallel, Int. J. Electric. Eng. Inform. 2, 313 (2010).

    Article  Google Scholar 

  21. M. Meunier and J. Quirke, J. Chem. Phys. 115, 2876 (2001).

    Article  Google Scholar 

  22. S. Chouikhi, I. Boukhris, E. Belgaroui, and A. Kallel, J. Electrostat. 71, 14 (2013).

    Article  Google Scholar 

  23. G. Chen and S. Han Loi, Mater. Res. Soc. Symp. 889, 08 (2006).

    Google Scholar 

  24. S. Le Roy, G. Teyssèdre, and C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 12, 644 (2005).

    Article  Google Scholar 

  25. S. Roy, G. Teyssedre, C. Laurent, G.C. Montanari, and F. Palmieri, Phys. D Appl. Phys. 39, 1427 (2006).

    Article  Google Scholar 

  26. L.A. Dissado, and J.C. Fothergill, Electrical Degradation and Breakdown in Polymers (Peter Peregrinus Ltd, London, 1992), pp. 208–241.

  27. B.P. Leonard. NASA Technical Memorandum, ICOMP. (1990), p. 9.

  28. R. Dautray, and J. Louis Lions, Analyse Mathématique Et Calcul Numérique Pour Les Sciences Et Les Techniques, vol. 9 (Masson, Paris, 1988), pp. 1–20.

  29. S. Le Roy, G. Teyssedre, and C. Laurent, in IEEE Conference on ICPADM (2003), p. 859.

  30. J. Zhao, G. Chen, and P.L. Lewin, J. Appl. Phys. 112, 034116 (2012).

    Article  Google Scholar 

  31. J.M. Alison, Meas. Sci. Technol. 9, 1737 (1998).

    Article  Google Scholar 

  32. E. Belgaroui, I. Boukhris, and A. Kallel, Eur. Phys. J. Appl. Phys. 48, 20404 (2009).

    Article  Google Scholar 

  33. F. Baudoin, S. Le Roy, G. Teyssedre, and C. Laurent, J. Phys. D Appl. Phys. 41, 025306 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Laboratory Research & Development Materials Semiconductors and Dielectrics, LEDMaSD, Faculty of Technology, University Amar Telidji, Laghouat -Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Rogti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukhari, H., Rogti, F. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress. J. Electron. Mater. 45, 5334–5340 (2016). https://doi.org/10.1007/s11664-016-4723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4723-y

Keywords

Navigation