Skip to main content
Log in

Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy–Alumina Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy–Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy–alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature (T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature (T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE–Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari–Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lubin, Handbook of Composites (Ontario: Van Nostrand–Reinhold, 1982), p. 57.

    Book  Google Scholar 

  2. J.E. Mark, Physical Properties of Polymers Handbook, 2nd ed. (New York: Springer, 2007), p. 155.

    Book  Google Scholar 

  3. N. Masataka, O. Katsuhiko, K. Koichi, and S. Takao, JP Patent, 2010001427 A (2010).

  4. M. Akatsuka and Y. Takezawa, J. Appl. Polym. Sci. 89, 2464 (2003).

    Article  Google Scholar 

  5. K. Fukushima, H. Takahashi, Y. Takezawal, M. Hattori, M. Itoh, and M. Yonekura, in Annual Report Conference on Electrical Insulation and Dielectric Phenomena (2004).

  6. W.A. Su, J. Polym. Sci. Polym. Chem. 31, 3251 (1993).

    Article  Google Scholar 

  7. C. Lin and L. Chien, Macromol. Rapid Commun. 16, 869 (1995).

    Article  Google Scholar 

  8. A. Mititelu and C.N. Cascaval, Polym. Plast. Tech. Eng. 44, 151 (2005).

    Article  Google Scholar 

  9. J.J. Mallon and P.M. Adams, J. Polym. Sci. Polym. Chem. 31, 2249 (1993).

    Article  Google Scholar 

  10. C. Carfagn, E. Amendola, and M. Giamberini, Macromol. Chem. Phys. 195, 2307 (1994).

    Article  Google Scholar 

  11. A. Mititelu-Mija, C.N. Cascaval, and P. Navard, Design. Monom. Polym. 8, 487 (2005).

    Article  Google Scholar 

  12. P. Castell, M. Galià, and A. Serra, Macromol. Chem. Phys. 202, 1649 (2001).

    Article  Google Scholar 

  13. B. Koscielny, A. Pfitzmann, and M. Fedtke, Polym. Bull. 32, 529 (1994).

    Article  Google Scholar 

  14. Y. Yu, M. Wang, X. Liu, L. Zhao, X. Tang, and S. Li, J. Appl. Polym. Sci. 101, 4366 (2006).

    Article  Google Scholar 

  15. Y. Zheng, S. Ren, Y. Ling, and M. Lu, Mol. Cryst. Liq. Cryst. 452, 3 (2006).

    Article  Google Scholar 

  16. J.Y. Lee and J. Jang, Polymer 47, 3036 (2006).

    Article  Google Scholar 

  17. J. Gao, G. Hou, Y. Wang, H. Li, and Y. Liu, Polym. Plast. Tech. Eng. 45, 947 (2006).

    Article  Google Scholar 

  18. Z. Cai, J. Sun, Q. Zhou, and J. Xu, J. Polym. Sci. Polym. Chem. 45, 727 (2007).

    Article  Google Scholar 

  19. Z. Cai, J. Sun, D. Wang, and Q. Zhou, J. Polym. Sci. Polym. Chem. 45, 3922 (2007).

    Article  Google Scholar 

  20. L. Pottie, F. Costa-Torroa, M. Tessier, P. Davidson, and A. Fradet, Liq. Cryst. 35, 913 (2008).

    Article  Google Scholar 

  21. C. Ortiz, R. Kim, E. Rodighiero, C.K. Ober, and E.J. Kramer, Macromolecules 31, 4074 (1998).

    Article  Google Scholar 

  22. V. Ambrogi, C. Carfagna, M. Giamberini, E. Amendola, and E.P. Douglas, J. Adhes. Sci. Technol. 16, 15 (2002).

    Article  Google Scholar 

  23. T. Mihara, Y. Nishimiya, and N. Koide, J. Appl. Polym. Sci. 68, 1979 (1998).

    Article  Google Scholar 

  24. J. Jang, J. Bae, and K. Lee, Polymer 46, 3677 (2005).

    Article  Google Scholar 

  25. S. Cho, E.P. Douglas, and J.Y. Lee, J. Polym. Eng. Sci. 46, 623 (2006).

    Article  Google Scholar 

  26. A. Bruggeman, S.B. Damman, and A.H.A. Tinnemans, J. Appl. Polym. Sci. 66, 1971 (1997).

    Article  Google Scholar 

  27. H.J. Sue, J.D. Earls, and R.E. Hefner, J. Mater. Sci. 32, 4031 (1997).

    Article  Google Scholar 

  28. Q. Lin and A.F. Yee, Polymer 35, 2679 (1994).

    Article  Google Scholar 

  29. E. Amendola, C. Carfagna, M. Giamberini, and G. Pisaniello, Macromol. Chem. Phys. 196, 1577 (1995).

    Article  Google Scholar 

  30. Z. Gao, Y. Yu, Y. Xu, and S. Li, J. Appl. Polym. Sci. 105, 1861 (2007).

    Article  Google Scholar 

  31. M. Ochi and H. Takashima, Polymer 42, 2379 (2001).

    Article  Google Scholar 

  32. A. Mija, P. Navard, C. Peiti, D. Babor, and N. Guigo, Eur. Polym. 46, 1380 (2010).

    Article  Google Scholar 

  33. E.J. Choi, H. Ahn, J.K. Lee, and J. Jin, Polymer 41, 7617 (2000).

    Article  Google Scholar 

  34. D. Ribera, A. Mantecón, and A. Serra, Macromol. Chem. Phys. 202, 1658 (2001).

    Article  Google Scholar 

  35. M. Akatsuka and Y. Takezawa, J. Appl. Polym. Sci. 89, 2464 (2003).

    Article  Google Scholar 

  36. N. Tokushige, T. Mihara, and N. Koide, Mol. Cryst. Liq. Cryst. 428, 33 (2005).

    Article  Google Scholar 

  37. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Isgigaki, N. Shimoyama, and H. Aoki, J. Polym. Sci. Polym. Phys. 41, 1739 (2003).

    Article  Google Scholar 

  38. T. Giang, J. Part, I. Cho, Y. Ko, and J. Kim, Polym. Composite. 34, 468 (2013).

    Article  Google Scholar 

  39. T. Giang and J. Kim, J. Ind. Eng. Chem. 30, 77 (2015).

    Article  Google Scholar 

  40. T. Giang and J. Kim, Mol. Cryst. Liq. Cryst. (2015). doi:10.1080/15421406.2015.1107816.

    Google Scholar 

  41. J. McHugh, P. Fideu, A. Herrmann, and W. Stark, Polym. Test. 29, 759 (2010).

    Article  Google Scholar 

  42. Y. Agari and T. Uno, J. Appl. Polym. Sci. 30, 2225 (1985).

    Article  Google Scholar 

  43. G.G. Barclay, C.K. Ober, K.I. Papathomas, and D.W. Wang, Macromolecules 25, 2947 (1992).

    Article  Google Scholar 

  44. V. Krevelen, Properties of Polymers, 3rd ed. (New York: Elsevier, 1990), p. 525.

    Google Scholar 

  45. Y. Agari, J. Appl. Polym. Sci. 49, 1625 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giang, T., Kim, J. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy–Alumina Composites. J. Electron. Mater. 46, 627–636 (2017). https://doi.org/10.1007/s11664-016-4704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4704-1

Keywords

Navigation