Skip to main content

Advertisement

Log in

AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ε′, and dielectric loss index, ε′′, reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ε′ and ε′′ reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A.A. Darwish, M.M. El-Nahass, and A.E. Bekheet, J. Alloy. Compd. 586, 142 (2014).

    Article  Google Scholar 

  2. A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, and A.A. Al-Zubaidi, J. Alloy. Compd. 589, 393 (2014).

    Article  Google Scholar 

  3. A.A.A. Darwish, A.M. Hassanien, T.A. Hanafy, and M.M. El-Nahass, Synth. Met. 199, 339 (2015).

    Article  Google Scholar 

  4. S. Tewari, A. Bhattacharjee, and P.P. Sahay, Phys. Sci. Technol. 5, 216 (2010).

    Google Scholar 

  5. S. Mahrous and T.A. Hanfy, Curr. Appl. Phys. 4, 461 (2004).

    Article  Google Scholar 

  6. Ş. KarataŞ and Z. Kara, Microelectron. Reliab. 51, 2205 (2011).

    Article  Google Scholar 

  7. B. Barış, Physica E 54, 171 (2013).

    Article  Google Scholar 

  8. G. Yellaiah, T. Shekharam, K. Hadasa, and M. Nagabhushanam, J. Alloy. Compd. 609, 192 (2014).

    Article  Google Scholar 

  9. V.L. Rao, T. Shekharam, T.M. Kumar, and M. Nagabhushanam, Mater. Chem. Phys. 159, 83 (2015).

    Article  Google Scholar 

  10. S.K. Srivastava, M. Pramanik, D. Palit, and H. Haueseler, Chem. Mater. 16, 4168 (2004).

    Article  Google Scholar 

  11. A.M. Farid and A.E. Bekheet, Vacuum 59, 932 (2000).

    Article  Google Scholar 

  12. P. Salinas-Estevané and M. Eduardo, Sánchez. Mater. Lett. 64, 2627 (2010).

    Article  Google Scholar 

  13. M. Calixto-Rodriguez, H. Martınez, Y. Pena, O. Flores, H.E. Esparza-Ponce, A. Sanchez-Juarez, J. Campos-Alvarez, and P. Reyes, Appl. Surf. Sci. 256, 2428 (2010).

    Article  Google Scholar 

  14. S. Srikanth, N. Suriyanarayanan, S. Prabahar, V. Balasubramanian, and D. Kathirvel, Adv. Appl. Sci. Res. 2, 95 (2011).

    Google Scholar 

  15. K.F. Abd-El-Rahman and A.A.A. Darwish, Curr. Appl. Phys. 11, 1265 (2011).

    Article  Google Scholar 

  16. M.H. Lakhdar, B. Ouni, and M. Amlouk, Mater. Sci. Semicond. Process. 19, 32 (2014).

    Article  Google Scholar 

  17. R. Boughalmi, A. Boukhachem, M. Kahlaoui, H. Maghraoui, and M. Amlouk, Mater. Sci. Semicond. Process. 26, 593 (2014).

    Article  Google Scholar 

  18. P.A. Nwofe, Int. J. Nano. Chem. 1, 111 (2015).

    Google Scholar 

  19. S. Subramanian, P. Chithralekha, and D.P. Padiyan, Phys. B 405, 925 (2010).

    Article  Google Scholar 

  20. P.A. Nwofe, Adv. Appl. Sci. Res. 6, 168 (2015).

    Google Scholar 

  21. M. Kriisa, M. Krunks, I.O. Acik, E. Kärber, and V. Mikli, Mater. Sci. Semicond. Process. 40, 867 (2015).

    Article  Google Scholar 

  22. F. Aousgia, W. Dimassia, B. Bessaisa, and M. Kanzar, Appl. Surf. Sci. 350, 19 (2015).

    Article  Google Scholar 

  23. R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 78, 385 (2002).

    Article  Google Scholar 

  24. A.N. Papathanassiou, I. Sakellis, and J. Grammatikakis, Appl. Phys. Lett. 91, 122911 (2007).

    Article  Google Scholar 

  25. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  26. M.M. El-Nahass, K.F. Abd-El-Rahman, and A.A.A. Darwish, Physica B 403, 219 (2008).

    Article  Google Scholar 

  27. M.A. Ahmed, N. Okasha, and R.M. Keershi, J. Magn. Magn. Mater. 321, 3967 (2009).

    Article  Google Scholar 

  28. S.R. Elliot, Adv. Phys. 36, 135 (1987).

    Article  Google Scholar 

  29. K. Funke, Prog. Solid State Chem. 22, 111 (1993).

    Article  Google Scholar 

  30. U. Shail, S.A. Kumar, and O. Parkash, J. Appl. Phys. 84, 828 (1998).

    Article  Google Scholar 

  31. J. Beltran and H. Ricardo, Martinez, G. Morell. J. Appl. Phys. 115, 084102 (2014).

    Article  Google Scholar 

  32. G.E. Pike, Phys. Rev. B 6, 1572 (1972).

    Article  Google Scholar 

  33. S.M. Attia, A.M. Abo El Ata, and D. El Kony, J. Magn. Magn. Mater. 270, 142 (2004).

    Article  Google Scholar 

  34. B. Ouni, M.H. Lakhadar, R. Boughalmi, T. Larbi, A. Boukhachem, A. Madani, K. Boubaker, and M. Amlouk, J. Non Cryst. Solids 367, 1 (2013).

    Article  Google Scholar 

  35. R. Ertuğrul and A. Tataroğlu, Chin. Phys. Lett. 29, 077304 (2012).

    Article  Google Scholar 

  36. M.S. Hossain, R. Islam, and K.A. Khan, J. Optoelecron. Adv. Mater. 9, 52192 (2007).

    Google Scholar 

  37. M. Okutan, E. Basaran, H.I. Bakan, and F. Yakuphanoglu, Phys. B 364, 300 (2005).

    Article  Google Scholar 

  38. S. Dussan, A. Kumar, J.F. Scott, and R.S. Katiyar, AIP Adv. 2, 032136 (2012).

    Article  Google Scholar 

  39. J. Varghese, S. Barth, L. Keeney, R.W. Whatmore, and J.D. Holmes, Nono Lett. 12, 868 (2012).

    Article  Google Scholar 

  40. J.F. Scott, Ferroelectrics 316, 13 (2005).

    Article  Google Scholar 

  41. M.G. Hutchins, M.M. El-Nahas, and O. Abu-Alkhair, J. Non Cryst. Solids 353, 4137 (2007).

    Article  Google Scholar 

  42. B.G. Soares, M.E. Leyva, G.M.O. Barra, and D. Khastgir, J. Eur. Polym. 42, 676 (2006).

    Article  Google Scholar 

  43. B. Tareev, Physics of Dielectric Materials (Moscow: Mir Publishers, 1979).

    Google Scholar 

  44. R.P. Pawar, Ceram. Int. 40, 10423 (2014).

    Article  Google Scholar 

  45. S. Mahrous, T.A. Hanafy, and M.S. Sobhy, Curr. Appl. Phys. 7, 629 (2007).

    Article  Google Scholar 

  46. A. Hassen, T.A. Hanafy, S. El-Sayed, and A. Himanshu, J. Appl. Phys. 110, 114119 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. A. Darwish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Rahman, K.F., Darwish, A.A.A., Qashou, S.I. et al. AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material. J. Electron. Mater. 45, 3460–3465 (2016). https://doi.org/10.1007/s11664-016-4473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4473-x

Keywords

Navigation