Skip to main content
Log in

Microstructure and Grain Orientation Evolution in Sn-3.0Ag-0.5Cu Solder Interconnects Under Electrical Current Stressing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In situ observation was performed on cross-sections of Sn-3.0Ag-0.5Cu solder interconnects to track the evolution of microstructure and grain orientation under electrical current stressing. Cross-sections of Cu/Ni–Sn-3.0Ag-0.5Cu–Ni/Cu sandwich-structured solder interconnects were prepared by the standard metallographic method and subjected to electrical current stressing for different times. The electron backscatter diffraction technique was adopted to characterize the grain orientation and structure of the solder interconnects. The results show that metallization dissolution and intermetallic compound (IMC) migration have close relationships with the grain orientation and structure of the solder interconnects. Ni metallization dissolution at the cathode interface and IMC migration in the solder bulk can be accelerated when the c-axis of the grain is parallel to the electron flow direction, while no observable change was found when the c-axis of the grain was perpendicular to the electron flow direction. IMC can migrate along or be blocked at the grain boundary, depending on the misorientation between the current flow direction and grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Liang, C. Chen, J.K. Han, L.H. Xu, K.N. Tu, and Y.S. Lai, J. Appl. Phys. 107, 093715 (2010).

    Article  Google Scholar 

  2. F. Ren, J.W. Nah, K.N. Tu, B.S. Xiong, L.H. Xu, and J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006).

    Article  Google Scholar 

  3. J.Q. Chen, J.D. Guo, K.L. Liu, and J.K. Shang, J. Appl. Phys. 114, 153509 (2013).

    Article  Google Scholar 

  4. H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).

    Article  Google Scholar 

  5. T. Tian, F. Xu, J.K. Han, D. Choi, Y. Cheng, L. Helfen, M.D. Michiel, T. Baumbach, and K.N. Tu, Appl. Phys. Lett. 99, 082114 (2011).

    Article  Google Scholar 

  6. J.W. Nah, F. Ren, K.N. Tu, S. Venk, and G. Camara, J. Appl. Phys. 99, 023520 (2006).

    Article  Google Scholar 

  7. Y.C. Chan and D. Yang, Prog. Mater. Sci. 55, 428–475 (2010).

    Article  Google Scholar 

  8. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).

    Article  Google Scholar 

  9. M.H. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  10. Y.W. Wang, K.H. Lu, V. Gupta, L. Stiborek, D. Shirley, S.H. Chae, J. Im, and P.S. Ho, J. Mater. Res. 27, 1131–1141 (2012).

    Article  Google Scholar 

  11. H.M. Tong, Y.S. Lai, and C.P. Wong, Advanced Flip Chip Packaging (New York: Springer, 2013).

    Book  Google Scholar 

  12. H.T. Chen, J. Han, J. Li, and M.Y. Li, Microelectron. Reliab. 52, 1112–1120 (2012).

    Article  Google Scholar 

  13. B. Zhou, T.R. Bieler, T.K. Lee, and K.C. Liu, J. Electron. Mater. 39, 2669–2679 (2010).

    Article  Google Scholar 

  14. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370–381 (2008).

    Article  Google Scholar 

  15. B. Zhou, Q. Zhou, T.R. Bieler, and T.K. Lee, J. Electron. Mater. 44, 895–908 (2015).

    Article  Google Scholar 

  16. T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scripta Mater. 80, 37–40 (2014).

    Article  Google Scholar 

  17. B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).

    Article  Google Scholar 

  18. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469–1472 (1984).

    Article  Google Scholar 

  19. A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Appl. Phys. Lett. 85, 2490 (2004).

    Article  Google Scholar 

  20. K. Yamanaka, Y. Tsukada, and K. Suganuma, Scripta Mater. 55, 867–870 (2006).

    Article  Google Scholar 

  21. A.T. Wu, A.M. Gusak, and K.N. Tu, Appl. Phys. Lett. 86, 241902 (2005).

    Article  Google Scholar 

  22. L. Tasooji and K.Lee Lara, J. Electron. Mater. 43, 4386–4394 (2014).

    Article  Google Scholar 

  23. H.J. Ji, Q. Wang, M.Y. Li, and C.Q. Wang, J. Electron. Mater. 43, 2467–2478 (2014).

    Article  Google Scholar 

  24. B. Arfaei, N. Kim, and E.J. Cotts, J. Electron. Mater. 41, 362–374 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation (No. 51375116), Shenzhen Special Funds for Overseas High-level Talents (No. KQC201109020053A), Shenzhen Special Funds for Strategic Emerging Industries (No. JCYJ201404 17172417135), and Shenzhen Funds for Supporting National and Provincial Plans (No. GJHS201206271 12429510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Hang, C., Fu, X. et al. Microstructure and Grain Orientation Evolution in Sn-3.0Ag-0.5Cu Solder Interconnects Under Electrical Current Stressing. J. Electron. Mater. 44, 3880–3887 (2015). https://doi.org/10.1007/s11664-015-3922-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3922-2

Keywords

Navigation