Skip to main content
Log in

Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The mechanism of the reduced thermal conductivity of fishbone-type phononic crystal (PnC) nanostructures, in which ballistic phonon transport is dominant, was investigated with consideration of both the wave and particle nature of phonons. Phononic band diagrams were calculated for an Si nanowire and a fishbone-type PnC structure with a period of 100 nm, and a clear reduction of the group velocity of phonons, because of a zone-folding effect, was shown. Air-suspended Si nanowires and fishbone-type PnC structures were fabricated by electron beam (EB) lithography, and their thermal conductivities were measured by use of the originally developed micro time-domain thermoreflectance method. The PnC structure had a much lower thermal conductivity. We measured the thermal conductivity of a variety of PnC structures with different fin widths to investigate the mechanism of the reduced thermal conductivity observed. The result indicates that the increase of the phonon traveling distance. as a result of the fins, also results in reduced thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Shi, Nanoscale Microscale Thermophys. Eng. 16, 79 (2012).

    Article  Google Scholar 

  2. J. Hone, et al., Science 289, 1730 (2000).

    Article  Google Scholar 

  3. J.H. Seol, et al., Science 328, 213 (2010).

    Article  Google Scholar 

  4. V. Narayanamurti, H.L. Stormer, M.A. Chin, A.C. Grossard, and W. Wiegmann, Phys. Rev. Lett. 2, 2012 (1979).

    Article  Google Scholar 

  5. M.N. Luckyanova, et al., Science 338, 936 (2012).

    Article  Google Scholar 

  6. D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).

    Article  Google Scholar 

  7. C. Bera, N. Mingo, and S. Volz, Phys. Rev. Lett. 104, 115502 (2010).

    Article  Google Scholar 

  8. M. Kashiwagi, S. Hirata, K. Harada, Y. Zheng, K. Miyazaki, M. Yahiro, and C. Adachi, Appl. Phys. Lett. 98, 023114 (2011).

    Article  Google Scholar 

  9. A.I. Hochbaum, et al., Nature 451, 163 (2008).

    Article  Google Scholar 

  10. J.-K. Yu, et al., Nat. Nanotech. 5, 718 (2010).

    Article  Google Scholar 

  11. P.E. Hopkins, et al., Nano Lett. 11, 107 (2011).

    Article  Google Scholar 

  12. N. Zen, T.A. Puurtinen, T.J. Isotalo, S. Chaudhuri, and I.J. Maasilta, Nat. Commun. 5, 3435 (2014).

    Article  Google Scholar 

  13. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  14. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  Google Scholar 

  15. T. Baba, Nat. Photon. 2, 465 (2008).

    Article  Google Scholar 

  16. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, and O. Painter, Nature 459, 550 (2009).

    Article  Google Scholar 

  17. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Nat. Phys. 6, 279 (2010).

    Article  Google Scholar 

  18. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, Nat. Photon. 7, 133 (2013).

    Article  Google Scholar 

  19. J. Maire and M. Nomura, Jpn. J. Appl. Phys. 53, 06JE09 (2014).

    Article  Google Scholar 

  20. T. Gorishnyy, C.K. Ullal, M. Maldovan, G. Fytas, and E.L. Thomas, Phys. Rev. Lett. 94, 115501 (2005).

    Article  Google Scholar 

  21. J.N. Gillet, Y. Chalopin, and S. Volz, J. Heat Transf. 131, 043206 (2009).

    Article  Google Scholar 

  22. M. Maldovan, Nature 503, 209 (2013).

    Article  Google Scholar 

  23. A.S. Henry and G. Chen, J. Comput. Theor. Nanosci. 5, 1 (2008).

    Article  Google Scholar 

  24. J. Shiomi, J. Heat Transf. Soc. Jpn 50, 21 (2011).

    Google Scholar 

  25. E. Dechaumphai and R. Chen, J. Appl. Phys 111, 073508 (2012).

    Article  Google Scholar 

  26. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).

    Article  Google Scholar 

  27. A. Jain, Y.-J. Yu, and A.J.H. McGaughey, Phys. Rev. B 87, 195301 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nomura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, M., Maire, J. Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures. J. Electron. Mater. 44, 1426–1431 (2015). https://doi.org/10.1007/s11664-014-3387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3387-8

Keywords

Navigation