Skip to main content
Log in

The High-Temperature Thermoelectric Properties of Polycrystalline Ba8Ga x Al y Si46−x−y Type-I Clathrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric materials suitable for practical thermoelectric power generators should, ideally, be based on light elements, for example Si and Al, which are abundantly available. For this reason, silicon clathrate compounds in which both Ga and Al were substituted for Si were synthesized and their thermoelectric properties were investigated. The temperature-dependent electrical resistivity of the samples indicated their metallic nature, and their negative Seebeck coefficient suggested that charge transport in the samples was mainly through electron transport. The maximum absolute value of the Seebeck coefficient achieved was −180 μV/K at 1040 K for Ba7.90Ga13.8Al2.29Si30.0. Thus, these materials have potential for use in practical thermoelectric power generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), p. 1.

    Google Scholar 

  2. C.L. Condron, L. Porter, T. Guo, and S.M. Kauzlarich, Inorg. Chem. 44, 9185 (2005).

    Article  Google Scholar 

  3. C.L. Condron, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 4939 (2006).

    Article  Google Scholar 

  4. C.L. Condron, J. Martin, G.S. Nolas, P.M.B. Piccoli, A.J. Schultz, and S.M. Kauzlarich, Inorg. Chem. 45, 9381 (2006).

    Article  Google Scholar 

  5. J. Lee, J. Park, S. You, J. Lee, I. Kim, K. Jang, and S. Ur, Solid State Phenom. 118, 561 (2006).

    Article  Google Scholar 

  6. J. Lee, J. Park, S. You, J. Lee, Y. Kim, I. Kim, K. Jang, and S. Ur, Mater. Sci. Forum 539–543, 3309 (2007).

    Article  Google Scholar 

  7. J. Lee, J. Lee, Y. Kim, I. Kim, K. Jang, S. Ur, H. Choe, and G. Yang, Mater. Sci. Forum 544–545, 275 (2007).

    Article  Google Scholar 

  8. Y. Nakakohara, N. Mugita, Y. Nagatomo, M. Saisho, T. Motooka, R. Teranishi, and S. Munetoh, Mater. Res. Soc. Symp. Proc. 1325, 131 (2011).

    Article  Google Scholar 

  9. J.H. Roudebush, Cdl Cruz, B.C. Chakoumakos, and S.M. Kauzlarich, Inorg. Chem. 51, 1805 (2012).

    Article  Google Scholar 

  10. H. Anno, M. Hokazono, R. Shirataki, and Y. Nagami, J. Mater. Sci. 48, 2846 (2013). doi:10.1007/s10853-012-6977-y.

    Article  Google Scholar 

  11. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).

    Article  Google Scholar 

  12. A. Bentien, B.B. Iversen, J.D. Bryan, G.D. Stucky, A.E.C. Palmqvist, A.J. Schultz, and R.W. Henning, J. Appl. Phys. 91, 5694 (2002).

    Article  Google Scholar 

  13. D. Nataraj, J. Nagao, M. Ferhat, T. Ebinuma, and H. Anno, 21st International Conference on Thermoelectronics (2002), p. 72.

  14. T. Uemura, K. Koga, K. Akai, and M. Matsuura, Trans. Mater. Res. Soc. Jpn. 31, 311 (2006).

    Google Scholar 

  15. R. Shirataki, M. Hokazono, T. Nakabayashi, and H. Anno, Mater. Sci. Eng. 18, 1422012 (2011).

    Google Scholar 

  16. K. Kishimoto, N. Ikeda, K. Akai, and T. Koyanagi, Appl. Phys. Express 1, 031201 (2008).

    Article  Google Scholar 

  17. G. Cordier and P. Woll, J. Less Common Met. 169, 291 (1991).

    Article  Google Scholar 

  18. M. Falmbigl, A. Grytsiv, P. Rogl, and G. Giester, Intermetallics 36, 61 (2013).

    Article  Google Scholar 

  19. S. Deng, X. Tang, P. Li, and Q. Zhang, J. Appl. Phys. 103, 073503 (2008).

    Article  Google Scholar 

  20. Y. Sasaki, K. Kishimoto, T. Koyanagi, H. Asada, and K. Akai, J. Appl. Phys. 105, 073702 (2009).

    Article  Google Scholar 

  21. S. Deng, Y. Saiga, K. Suekuni, and T. Takabatake, J. Appl. Phys. 108, 073705 (2010).

    Article  Google Scholar 

  22. B. Eisenmann, H. Schäfer, and R. Zagler, J. Less Common Met. 118, 43 (1986).

    Article  Google Scholar 

  23. E.A. Brandes, Smithells Metals Reference Book, 6th ed. (London: Butterworths, 1983), pp. 4–25, Table 4.21.

  24. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, D., Tadokoro, J. & Eguchi, T. The High-Temperature Thermoelectric Properties of Polycrystalline Ba8Ga x Al y Si46−x−y Type-I Clathrates. J. Electron. Mater. 43, 2141–2144 (2014). https://doi.org/10.1007/s11664-014-2991-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-2991-y

Key words

Navigation