Skip to main content
Log in

Effects of Annealing Temperature on the Electric Properties of 0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 Ferroelectric Thin Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 (NBT–BT6) ferroelectric thin films have been fabricated on Pt–Ti–SiO2–Si(100) substrate by metal–organic decomposition. The effects of annealing temperature (650–800°C) on the microstructure, and the piezoelectric, ferroelectric, and dielectric properties of the thin films were studied in detail. The residual stress was evaluated by the orientation average method to clarify its dependence on annealing temperature and grain size, and it was correlated with the electric properties to understand the mechanism of piezoelectric enhancement. Among the thin films, NBT–BT6 thin film annealed at 750°C has the largest effective piezoelectric coefficient, 95.1 pm/V, remnant polarization, 49.7 μC/cm2, spontaneous polarization, 105.2 μC/cm2, and dielectric constant, 504, and the lowest dielectric loss, 0.05, and tensile residual stress, 24.5 MPa. For the NBT–BT6 thin film annealed at 750°C, a wide temperature range, 183–210°C, around the phase transition temperature (T m) was observed in the dielectric temperature plots, and the diffusion coefficients (γ) were quantitatively assessed as 1.6, 1.78, and 1.6. Piezoelectric performance is discussed on the basis of the dispersion phase transition and residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Xu, J. Wen, C. Stock, and P.M. Gehring, Nat. Mater. 7, 562 (2008).

    Article  Google Scholar 

  2. Y.M. Chiang, G.W. Farrey, and A.N. Soukhojak, Appl. Phys. Lett. 73, 3683 (1998).

    Article  Google Scholar 

  3. D.Z. Zhang, X.J. Zheng, X. Feng, T. Zhang, J. Sun, S.H. Dai, L.J. Gong, Y.Q. Gong, L. He, Z. Zhu, J. Huang, and X. Xu, J. Alloys Compd. 504, 129 (2010).

    Article  Google Scholar 

  4. H. Dong, X.J. Zheng, W. Li, Y.Q. Gong, J.F. Peng, and Z. Zhu, J. Appl. Phys. 110, 124109 (2011).

    Article  Google Scholar 

  5. Y.Q. Gong, H. Dong, X.J. Zheng, J.F. Peng, X.J. Li, and R.J. Huang, J. Phys. D Appl. Phys. 45, 305301 (2012).

    Article  Google Scholar 

  6. J.F. Li, Z.X. Zhu, and F.P. Lai, J. Phys. Chem. C 114, 17796 (2010).

    Article  Google Scholar 

  7. M.D. Nguyen, C.T.Q. Nguyen, T.Q. Trinh, T. Nguyen, T.N. Pham, G. Rjinders, and H.N. Vu, Mater. Chem. Phys. 138, 862 (2013).

    Article  Google Scholar 

  8. Y. Wei, H.B. Cheng, X.Y. Wang, and X.J. Zheng, Appl. Phys. Lett. 101, 231909 (2012).

    Article  Google Scholar 

  9. H. Wen, X. Wang, C. Zhong, L. Shu, and L. Li, Appl. Phys. Lett. 90, 202902 (2007).

    Article  Google Scholar 

  10. K.M. Johnson, J. Appl. Phys. 33, 2826 (1962).

    Article  Google Scholar 

  11. T.H. Fang, W.J. Chang, C.M. Lin, L.W. Ji, Y.S. Chang, and Y.J. Hsiao, Mater. Sci. Eng. A 426, 157 (2006).

    Article  Google Scholar 

  12. J.P. Mercurio and P. Marchet, Integr. Ferroelectr. 61, 163 (2004).

    Article  Google Scholar 

  13. T. Yu, K.W. Kwok, and H.L.W. Chan, Thin Solid Films 515, 3563 (2007).

    Article  Google Scholar 

  14. J. Suchanicz, J. Mater. Sci. 37, 489 (2002).

    Article  Google Scholar 

  15. M. Cernea, F. Fochi, G.V. Aldica, B.S. Vasile, R. Trusca, and C. Galassi, J. Mater. Sci. 47, 3669 (2012).

    Article  Google Scholar 

  16. M. Guennou, M. Savinov, J. Drahokoupil, H.S. Luo, and J. Hlinka, High piezoelectric coefficient of single domain Mn-doped NBT-6%BT single crystal. (IOP arxiv, 2012) http://arxiv.org/pdf/1212.0366v1.pdf. Accessed 3 Dec 2012.

  17. T. Harigai, Y. Tanaka, H. Adachi, and E. Fuji, Appl. Phys. Express 3, 111501 (2010).

    Article  Google Scholar 

  18. M. Cernea, A.C. Galca, M.C. Cioangher, C. Dragoi, and G. Ioncea, J. Mater. Sci. 46, 5621 (2011).

    Article  Google Scholar 

  19. T.M. Shaw, S. Mckinstry, and P.C. Mcintry, Annu. Rev. Mater. Sci. 30, 263 (2000).

    Article  Google Scholar 

  20. Y.P. Guo, D. Akai, K. Sawada, and M. Ishida, Solid State Sci. 10, 928 (2008).

    Article  Google Scholar 

  21. H.T. Ye, C.Q. Sun, and P. Hing, J. Phys. D Appl. Phys. 33, 148 (2000).

    Article  Google Scholar 

  22. Z. Yang, B. Liu, L. Wei, and Y. Hou, Mater. Res. Bull. 43, 81 (2008).

    Article  Google Scholar 

  23. M. Detalle, A. Ferri, A. Da Costa, R. Desfeux, C. Soyer, and D. Re′miens, Thin Solid Films 518, 4670 (2010).

    Article  Google Scholar 

  24. J. Yang, J. Chu, and M. Shen, Appl. Phys. Lett. 90, 242908 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J.F., Zheng, X.J., Gong, Y.Q. et al. Effects of Annealing Temperature on the Electric Properties of 0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 Ferroelectric Thin Film. J. Electron. Mater. 43, 724–731 (2014). https://doi.org/10.1007/s11664-013-2912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2912-5

Key words

Navigation