Skip to main content
Log in

Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Half-Heusler (HH) compounds are some of the most promising candidates among the medium-temperature thermoelectric materials being investigated for automotive and industrial waste heat recovery applications. For n- as well as p-type material, peak ZT values larger than one have been published recently, and first modules have been built. The next step to facilitate the industrialization of thermoelectric module production is upscaling of material synthesis. In this paper, the latest results of the thermoelectric properties of HH compounds produced in kg batches are presented and compared with values published in the literature. The performance of modules built from these materials is analyzed with respect to power output and long-term stability of the material and electrical contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schwall and B. Balke, Appl. Phys. Lett. 98, 042106 (2011).

    Article  Google Scholar 

  2. A. Bhardwaj, D.K. Misra, J.J. Pulikkotil, S. Auluck, A. Dhar, and R.C. Budhani, Appl. Phys. Lett. 101, 133103 (2012).

    Article  Google Scholar 

  3. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).

    Article  Google Scholar 

  4. X. Yan, W.S. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H.Z. Wang, D.Z. Wang, G. Chen, and Z.F. Ren, Energy Environ. Sci. 5, 7543 (2012).

    Article  Google Scholar 

  5. S. Populoh, O.C. Brunko, K. Gałązka, W. Xie, and A. Weidenkaff, Materials 6, 1326 (2013).

    Article  Google Scholar 

  6. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  7. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2011).

    Article  Google Scholar 

  8. O. Boffoue, A. Jacquot, A. Dauscher, B. Lenoir, and M. Stolzer, Rev. Sci. Instrum. 76, 053907 (2005).

    Article  Google Scholar 

  9. E. Lenz, S. Haupt, F. Edler, P. Ziolkowski, and H.F. Pernau, Phys. Status Solidi C 9, 2432 (2012).

    Article  Google Scholar 

  10. M. Jaegle, M. Bartel, D. Ebling, A. Jacquot, and H. Böttner, 6th European Conference on Thermoelectrics, Paris, France (2008).

  11. M. Jaegle, 5th European Conference on Thermoelectrics, Odessa, Ukraine (2007).

  12. M. Mikami, K. Kobayashi, T. Kawada, K. Kubo, and N. Uchiyama, J. Electron. Mater. 38, 1121 (2009).

    Article  Google Scholar 

  13. M. Mikami, K. Kobayashi, and S. Tanaka, Mater. Trans. 52, 1546 (2011).

    Article  Google Scholar 

  14. S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

    Article  Google Scholar 

  15. M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).

    Article  Google Scholar 

  16. N. Shutoh and S. Sakurada, J. Alloy. Compd. 389, 204 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Bartholomé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartholomé, K., Balke, B., Zuckermann, D. et al. Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities. J. Electron. Mater. 43, 1775–1781 (2014). https://doi.org/10.1007/s11664-013-2863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2863-x

Keywords

Navigation