Skip to main content
Log in

Interface Microstructure and Performance of Sb Contacts in Bismuth Telluride-Based Thermoelectric Elements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A thermoelectric joint composed of p-type Bi0.5Sb1.5Te3 (BiSbTe) material and an antimony (Sb) interlayer was fabricated by spark plasma sintering. The reliability of the thermoelectric joints was investigated using electron probe microanalysis for samples with different accelerated isothermal aging time. After aging for 30 days at 300°C in vacuum, the thickness of the diffusion layer at the BiSbTe/Sb interface was about 30 μm, and Sb2Te3 was identified to be the major interfacial compound by element analysis. The contact resistivity was 3 × 10−6 ohm cm2 before aging and increased to 8.5 × 10−6 ohm cm2 after aging for 30 days at 300°C, an increase associated with the thickness of the interfacial compound. This contact resistivity is very small compared with that of samples with solder alloys as the interlayer. In addition, we have also investigated the interface behavior of Sb layers integrated with n-type Bi2Se0.3Te2.7 (BiSeTe) material, and obtained similar results as for the p-type semiconductor. The present study suggests that Sb may be useful as a new interlayer material for bismuth telluride-based power generation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.A. Wright, Nature 181, 834 (1958).

    Article  Google Scholar 

  2. D.M. Rowe, Renew. Energ. 16, 1251 (1999).

    Article  Google Scholar 

  3. F.J. Disalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  4. H.J. Goldsmid, Electronic Refrigeration (London: Pion Limited, 1986).

    Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  6. W.S. Wang, J. Goebl, L. He, S. Aloni, Y.X. Hu, L. Zhen, and Y.D. Yin, J. Am. Chem. Soc. 132, 17316 (2010).

    Article  CAS  Google Scholar 

  7. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  8. C.N. Liao, C.H. Lee, and W.J. Chen, Electrochem. Solid State 10, 23 (2007).

    Article  Google Scholar 

  9. R. J. Buist and S. J. Roman, Proceeding of the 18th Int. Cof. Thermoelect. Int. Thermoelectr. Soc., 249 (1999).

  10. O.J. Mengali and M.R. Selier, Adv. Energ. Convers. 2, 59 (1962).

    Article  CAS  Google Scholar 

  11. Y.C. Lan, G. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 101910 (2008).

    Article  Google Scholar 

  12. W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci. Mater. EI. 22, 1313 (2011).

    Article  CAS  Google Scholar 

  13. F. Li, X.Y. Huang, Z.L. Sun, J. Ding, J. Jiang, W. Jiang, and L.D. Chen, J. Alloy Compd. 509, 4769 (2011).

    Article  CAS  Google Scholar 

  14. D. Chatterji and J.V. Smith, J. Electrochem. Soc. 120, 889 (1973).

    Article  CAS  Google Scholar 

  15. M.M. Ibrahim, M.M. Wakkad, E.Kh. Shokr, and H.A. Abd, EI-Ghani, Appl. Phys. A. 52, 237 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Huang, X., Jiang, W. et al. Interface Microstructure and Performance of Sb Contacts in Bismuth Telluride-Based Thermoelectric Elements. J. Electron. Mater. 42, 1219–1224 (2013). https://doi.org/10.1007/s11664-013-2566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2566-3

Keywords

Navigation