Skip to main content
Log in

Improving the Power Factor and the Role of Impurity Bands

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric figure of merit, Z, is proportional to the ratio of the power factor to the thermal conductivity. In the past, efforts to improve Z have largely been directed towards reduction of the thermal conductivity by lowering the lattice component, λ L. This approach has been so successful that λ L is now sometimes no larger than it is in a typical amorphous material. Any further improvement would require the development of thermoelectric materials with larger power factors. Here, we consider some of the ways in which the power factor might be enlarged. The carrier mobilities and density- of-states effective masses for different semiconductors are reviewed briefly, and the relevance of these properties to the power factor is discussed. It is shown that a semiconductor with the mobility and effective mass of electrons in silicon and with the minimum lattice conductivity might have a ZT value of about 6. Preferential scattering to improve the Seebeck coefficient is then considered. Finally, the effect on the power factor of a modification of the density of states through the introduction of impurity bands is calculated. It is found that such bands are not beneficial when they lie close to the edge of a main band. However, they significantly improve the power factor when they lie several kT from the band edge, and their effect can be enhanced by counterdoping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmid and R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954).

    Article  Google Scholar 

  2. R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  3. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Refrigeration (London: Infosearch, 1957), p. 138.

    Google Scholar 

  4. A.V. Ioffe and A.F. Ioffe, Dokl. Akad. Nauk SSSR 97, 821 (1954).

    CAS  Google Scholar 

  5. A.F. Ioffe, S.V. Airapetyants, A.V. Ioffe, N.V. Kolomoets, and L.S. Stil’bans, Dokl. Akad. Nauk SSSR 106, 981 (1956).

    CAS  Google Scholar 

  6. S.V. Airapetyants, B.A. Efimova, T.S. Stavitskaya, L.S. Stil’bans, and L.M. Sysoeva, Zh. Tekh. Fiz. 27, 2167 (1957).

    CAS  Google Scholar 

  7. F.D. Rosi, B. Abeles, and R.V. Jensen, J. Phys. Chem. Solids 10, 191 (1959).

    Article  CAS  Google Scholar 

  8. U., Birkholz, Z. Naturforsch. A 13, 780 (1958).

    Google Scholar 

  9. M.C. Steele and F.D. Rosi, J. Appl. Phys. 29, 1517 (1958).

    Article  CAS  Google Scholar 

  10. H.J. Goldsmid and A.W. Penn, Phys. Lett. 27, 523 (1968).

    Article  CAS  Google Scholar 

  11. G.A. Slack, CRC Handbook of Themoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1994), p. 407.

    Google Scholar 

  12. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  13. A.E. Middleton and W.W. Scanlon, Phys. Rev. 92, 219 (1953).

    Article  CAS  Google Scholar 

  14. C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).

    Article  CAS  Google Scholar 

  15. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1964).

    Article  Google Scholar 

  16. H.J. Goldsmid, J. Thermoelectr. 4, 31 (2006).

    Google Scholar 

  17. J.P. Issi, J.P. Michenaud, and J. Heremans, Phys. Rev. B 14, 5156 (1976).

    Article  CAS  Google Scholar 

  18. E. Conwell and V.F. Weisskopf, Phys. Rev. 77, 388 (1951).

    Article  Google Scholar 

  19. Y.-H. Park, J. Kim, H. Kim, I. Kim, K.-Y. Lee, D. Seo, H.-J. Choi, and W. Kim, Appl. Phys. A Mater. Sci. Process. 104, 7 (2011).

    Article  CAS  Google Scholar 

  20. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dams, Nano Lett. 11, 2206 (2011).

    Article  CAS  Google Scholar 

  21. J. Chen, G. Zhang, and B. Li, Nano Lett. 10, 3978 (2010).

    Article  CAS  Google Scholar 

  22. J.-H. Bahk, Z. Bian, M. Zebarjadi, P. Santhanam, R. Ram, and A. Shakouri, Appl. Phys. Lett. 99, 072118 (2011).

    Article  Google Scholar 

  23. G.A. Slack, Solid State Physics, ed. F. Seitz, D. Turnbull, and H. Ehrenreich (New York: Academic, 1979), pp. 1–71.

    Google Scholar 

  24. S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).

    Article  CAS  Google Scholar 

  25. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  CAS  Google Scholar 

  26. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  27. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  28. T.C. Harman, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 28, L1 (1999).

    Article  CAS  Google Scholar 

  29. J.P. Heremans, C.M. Thrush, D.T. Morelli, and M.C. Wu, Phys. Rev. Lett. 88, 216801 (2002).

    Article  Google Scholar 

  30. J.E. Cornett and O. Rabin, Phys. Rev. B 84, 205410 (2011).

    Article  Google Scholar 

  31. J. Zhou, R. Yang, G. Chen, and M.S. Dresselhaus, Phys. Rev. Lett. 107, 226601 (2011).

    Article  Google Scholar 

  32. B. Yates, J. Electron. Control 6, 17 (1958).

    Google Scholar 

  33. B. Paul, P.K. Rawat, and P. Banerji, Appl. Phys. Lett. 98, 262101 (2011).

    Article  Google Scholar 

  34. H.J. Goldsmid, J. Electron. Mater. 41, 2126 (2012).

    Article  CAS  Google Scholar 

  35. C.M. Jaworski, V. Kulbachinskii, and J.P. Heremans, Phys. Rev. B 80, 233201 (2009).

    Article  Google Scholar 

  36. W.J. Turner, A.S. Fischler, and W.E. Reese, J. Appl. Phys. 32, 2241 (1961).

    Article  Google Scholar 

  37. L.I. Berger, CRC Handbook of Chemistry and Physics, 91st ed. (2010–2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Goldsmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsmid, H.J. Improving the Power Factor and the Role of Impurity Bands. J. Electron. Mater. 42, 1482–1489 (2013). https://doi.org/10.1007/s11664-012-2295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2295-z

Keywords

Navigation