Skip to main content
Log in

Sensitivity of Strained and Unstrained Structure Growth on GaAs (111)B

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Compared with traditional (100) surfaces, the growth window for achieving high-quality photonic device structures on (111) GaAs by conventional molecular beam epitaxy (MBE) is very narrow. However, strained and unstrained structures produced on (111) substrates offer a new class of electronic and optoelectronic devices that benefit from the piezoelectric effect—a feature not accessible on symmetric (100) orientations—and additional material choices, such as InAs and InGaAs. In this work, we report on a series of investigations of strained and unstrained structures that include GaAs, AlGaAs/GaAs, and InAs/GaAs quantum layers deposited on epi-ready GaAs (111)B 2° → [\( 2\bar{1}\bar{1} \)] Si-doped substrates by conventional MBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.Y. Cho, J. Appl. Phys. 41, 2780 (1970).

    Article  CAS  Google Scholar 

  2. E.A. Caridi, T.Y. Chang, K.W. Goossen, and L.F. Eastman, Appl. Phys. Lett. 56, 659 (1990).

    Article  CAS  Google Scholar 

  3. G. Deligeorgis, G. Dialynas, Z. Hatzopoulos, and N.T. Pelekanos, Appl. Phys. Lett. 90, 121126 (2007).

    Article  Google Scholar 

  4. S. Cho and A. Majerfeld, J. Appl. Phys. 106, 023527 (2009).

    Article  Google Scholar 

  5. G. Deligeorgis, G.E. Dialynas, Z. Hatzopoulos, and N.T. Pelekanos, J. Phys. Conf. Ser. 10, 35 (2005).

    Article  CAS  Google Scholar 

  6. G. Triplett and D. Roberts, IEEE J. Quantum Electron. 46, 1782 (2010).

    Article  CAS  Google Scholar 

  7. M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

    Article  Google Scholar 

  8. P. Chen, K.C. Rajkumar, and A. Madhukar, J. Vac. Sci. Technol. B 9, 2312 (1991).

    Article  CAS  Google Scholar 

  9. K. Yang and L.J. Schowalter, Appl. Phys. Lett. 60, 1851 (1992).

    Article  CAS  Google Scholar 

  10. D.A. Woolf, D.I. Westwood, and R.H. Williams, Appl. Phys. Lett. 62, 1370 (1993).

    Article  CAS  Google Scholar 

  11. D.A. Woolf, Z. Sobiesierski, D.I. Westwood, and R.H. Williams, J. Appl. Phys. 71, 4908 (1992).

    Article  CAS  Google Scholar 

  12. D.A. Woolf, D.I. Westwood, and R.H. Williams, Semicond. Sci. Technol. 8, 1075 (1993).

    Article  CAS  Google Scholar 

  13. D.H. Tomich, K.G. Eyink, M.L. Seaford, W.F. Taferner, C.W. Tu, and W.V. Lampert, J. Vac. Sci. B 16, 1479 (1998).

    Article  CAS  Google Scholar 

  14. X. Marcadet, A. Fily, S. Collin, J.P. Landesman, M. Larive, J. Olivier, and J. Nagle, J. Cryst. Growth 201, 284 (1999).

    Article  Google Scholar 

  15. J.H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, Appl. Phys. Lett. 47, 100 (1985).

    Article  CAS  Google Scholar 

  16. H. Wen, Z.M. Wang, J.L. Shultz, B.L. Liang, and G.J. Salamo, Phys. Rev. B 70, 205307 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Triplett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, D.W., Roberts, D. & Triplett, G. Sensitivity of Strained and Unstrained Structure Growth on GaAs (111)B. J. Electron. Mater. 41, 959–964 (2012). https://doi.org/10.1007/s11664-012-2071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2071-0

Keywords

Navigation