Skip to main content
Log in

Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mg2Si is of interest as a thermoelectric (TE) material in part due to its low materials cost, lack of toxic components, and low mass density. However, harvesting of waste heat subjects TE materials to a range of mechanical and thermal stresses. To understand and model the material’s response to such stresses, the mechanical properties of the TE material must be known. The Mg2Si specimens included in this study were powder processed and then sintered via pulsed electrical current sintering. The elastic moduli (Young’s modulus, shear modulus, and Poisson’s ratio) were measured using resonant ultrasound spectroscopy, while the hardness and fracture toughness were examined using Vickers indentation. Also, the Vickers indentation crack lengths were measured as a function of time in room air to determine the susceptibility of Mg2Si to slow crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer, J. Electron. Mater. 38, 1360 (2009).

    Article  CAS  Google Scholar 

  2. Alfa Aesar, Material Safety Data Sheet, Magnesium Silicide (Alfa Aesar, 4 November 2010), http://www.alfa.com/content/msds/USA/45518.pdf. Accessed 2 December 2010.

  3. T.A. Michalske and S.W. Freiman, J. Am. Ceram. Soc. 66, 284 (1983).

    Article  CAS  Google Scholar 

  4. S.M. Wiederhorn, Int. J. Fract. Mech. 4, 171 (1968).

    Google Scholar 

  5. J.K. West and L.L. Hench, Philos. Mag. A 77, 85 (1998).

    Article  CAS  Google Scholar 

  6. S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky, J. Am. Ceram. Soc. 92, 1371 (2009).

    Article  CAS  Google Scholar 

  7. J.A. Connally and S.B. Brown, Science 256, 1537 (1992).

    Article  CAS  Google Scholar 

  8. J.E. Ni, E.D. Case, K.N. Khabir, R.C. Stewart, C.I. Wu, T.P. Hogan, E.J. Timm, S.N. Girard, and M.G. Kanatzidis, Mater. Sci. Eng. B 170, 58 (2010).

    Article  CAS  Google Scholar 

  9. E.E. Underwood, A.R. Colcord, and R.C. Waugh, Ceramic Microstructures, ed. R.M. Fulrath and J.A. Pask (New York: Wiley, 1968)

    Google Scholar 

  10. E.D. Case, J.R. Smyth, and V. Monthei, J. Am. Ceram. Soc. 64, C24 (1981).

    Article  Google Scholar 

  11. F. Ren, E.D. Case, J.E. Ni, E.J. Timm, E. Lara-Curzio, R.M. Trejo, C.-H. Lin, and M.G. Kanatzidis, Philos. Mag. 89, 143 (2009).

    Article  CAS  Google Scholar 

  12. J.B. Wachtman, W.R. Cannon, and M.J. Matthewson, Mechanical Properties of Ceramics, 2nd ed. (Hoboken, NJ: Wiley, 2009).

    Book  Google Scholar 

  13. C. Zhang, P. Han, X. Yan, C. Wang, L. Xia, and B. Xu, J. Phys. D 42, 125403 (2009).

    Article  Google Scholar 

  14. W.B. Whitten, P.L. Chung, and G.C. Danielson, J. Phys. Chem. Solids 26, 49 (1965).

    Article  CAS  Google Scholar 

  15. R.M. Hazen, Am. Miner. 61, 266 (1976).

    CAS  Google Scholar 

  16. E.A. Owen and G.D. Preston, Nature 113, 914 (1924).

    Google Scholar 

  17. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (Cambridge: MIT Press, 1971).

    Google Scholar 

  18. J. Tani and H. Kido, Comput. Mater. Sci. 42, 531 (2008).

    Article  CAS  Google Scholar 

  19. V. Milekhine, M.I. Onsøien, J.K. Solberg, and T. Skaland, Intermetallics 10, 743 (2002).

    Article  CAS  Google Scholar 

  20. R.D. Schmidt, J.E. Ni, E.D. Case, J.S. Sakamoto, D.C. Kleinow, B.L. Wing, R.C. Stewart, and E.J. Timm, J. Alloys Compd. 504, 303 (2010).

    Article  CAS  Google Scholar 

  21. G.H. Li, H.S. Gill, and R.A. Varin, Metall. Trans. A 24A, 2383 (1993).

    CAS  Google Scholar 

  22. B.R. Lawn, Fracture of Solids, 2nd ed. (Cambridge: University Press, 1993), p. 332.

    Book  Google Scholar 

  23. M.W. Barsoum, Fundamentals of Ceramics, ed. B. Cantor and M.J. Goringe (London: IOP Publishing, 2003)

    Chapter  Google Scholar 

  24. F. Ren, B.D. Hall, J.E. Ni, E.D. Case, J. Sootsman, M.G. Kanatzidis, E. Lara-Curzio, R.M. Trejo, and E.J. Timm, Mater. Res. Soc. Symp. Proc. 1044, 121 (2008).

    Google Scholar 

  25. L. Zhang, G. Rogl, A. Grytsiv, S. Puchegger, J. Koppensteiner, F. Spieckermann, H. Kabelka, M. Reinecker, P. Rogl, W. Schranz, M. Zehetbauer, and M.A. Carpenter, Mater. Sci. Eng. B 170, 26 (2010).

    Article  CAS  Google Scholar 

  26. L.D. Zhao, B. Zhang, J. Li, M. Zhou, W. Liu, and J. Liu, J. Alloys Compd. 455, 259 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon D. Case.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.D., Case, E.D., Giles, J. et al. Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials. J. Electron. Mater. 41, 1210–1216 (2012). https://doi.org/10.1007/s11664-011-1879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1879-3

Keywords

Navigation