Skip to main content

Advertisement

Log in

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Engine and industrial waste heat are sources of high-grade thermal energy that can potentially be utilized. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle. The model has many parameters that define combined system quantities such as overall output power and conversion efficiency. The model can identify the optimal performance points for both the thermoelectric and organic Rankine bottoming cycle. Key analysis results are presented showing the impact of critical design parameters on power output and system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

heat exchanger surface area, m2

c p :

specific heat, kJ/kg K

h :

enthalpy, kJ/kg

k :

thermal conductivity, W/m K

\( \dot{m} \) :

mass flow rate, kg/s

Q :

heat transfer, kJ

R :

thermal resistance, K/W

T :

temperature, °C or K

U :

overall heat transfer coefficient, W/m2 K

W :

power, kW

Z :

thermoelectric figure of merit

α :

thermal diffusivity, m2/s

Δ:

Change

ρ :

density, kg/m3

1:

Rankine working fluid leaving the boiler

6:

Rankine working fluid entering preboiler

7:

Rankine working fluid leaving preboiler

c, C:

low (cold)-side temperature of the TEG

exh:

exhaust stream leaving the boiler

h, H:

high-temperature side

HHi:

high-temperature heat exchanger inlet

HHo:

high-temperature heat exchanger outlet

HHs:

high-temperature heat exchanger surface

L:

low (cold)-side temperature condition

n :

n-type thermal electric material

out:

leaving system

p :

p-type thermal electric material

r:

Rankine cycle

ave:

averaged value

th:

thermal

References

  1. T.J. Hendricks and J.A. Lustbader, Proc. of the 21st International Conf. Thermoelectrics, IEEE Catalogue #02TH8657 (2002), pp. 381–386.

  2. R. B. Peterson, H. Wang, and T. Herron, Power Energy, 222 (3), 271 – 282, (2008)

    Google Scholar 

  3. K. Matsuura, and D. M. Rowe, CRC Handbook of Thermoelectrics, D. M. Rowe, ed, (Boca Raton, FL: CRC, 1995), pp. 573 – 593

    Google Scholar 

  4. D.M. Rowe, G. Min, S.G.K. Williams, A. Aoune, K. Matsuura, V.L. Kuznetsov, and L. Fu, Proc. 32nd International Energy Conversion Engineering Conf., Vol. 2 (1997), pp. 1075–1079.

  5. S.G.K. Williams, D.M. Rowe, A. Kaliazin, and G. Min, Proc. 5th European Workshop Thermoelectrics (1999), pp. 93–98.

  6. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007) doi:10.1002/adma.200600527

    Article  CAS  Google Scholar 

  7. G. S. Nolas, J. Poon, and M. Kanatzidis, MRS Bulletin 31, 199 (2006)

    CAS  Google Scholar 

  8. Tritt, T.M. and Subramanian, M.A., Materials Research Society Bulletin, 31, 188 (2006).

    Google Scholar 

  9. B. Poudel, Q.H. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science (2008). doi:10.1126/science.1156446.

  10. T. C. Hung, T.Y. Shai, and S.K. Wang, Energy 22, 661– 667, (1997) doi:10.1016/S0360-5442(96)00165-X

    Article  CAS  Google Scholar 

  11. K.Y. Bronicki, A. Elovic, and P. Rettger, Proc. of the 58th American Power Conf., Part 2 (1996), pp. 1086–1089

  12. Decher, R. (1997) “Direct Energy Conversion”. Oxford, England: Oxford University Press, 240 – 252

    Google Scholar 

  13. S.W. Angrist, “Direct Energy Conversion,” Fourth Edition, (Boston, MA: Allyn and Bacon, Inc., 1982) pp. 121 – 171

    Google Scholar 

  14. T.J. Hendricks (2007) Energy Resources Technology 129(3): 223-231. doi:10.1115/1.2751504

    Article  CAS  Google Scholar 

  15. T.J. Hendricks, ASME 2nd International Conf. Energy Sustainability (2008), Paper # ES2008-54244.

Download references

Acknowledgements

The authors would like to sincerely thank Dr. Ashok Patil, Technology Assessment Manager, US Army Research, Development, and Engineering Command, Ft. Belvoir, VA for his support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik W. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, E.W., Hendricks, T.J. & Peterson, R.B. Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle. J. Electron. Mater. 38, 1206–1213 (2009). https://doi.org/10.1007/s11664-009-0743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0743-1

Keywords

Navigation