Skip to main content

Advertisement

Log in

Growth and Characterization of GaN Nanowires for Hydrogen Sensors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We report on the growth and characterization of high-quality GaN nanowires for hydrogen sensors. We grew the GaN nanowires by catalytic chemical vapor deposition (CVD) using gold thin films as a catalyst on a Si wafer with an insulating SiO2 layer. Structural characterization of the as-grown nanowires by several methods shows that the nanowires are single-crystal wurtzite GaN.␣Photoluminescence measurements under 325 nm excitation show a near-band-edge emission peak around ∼3.4 eV. The hydrogen sensors are fabricated by contacting the as-grown GaN nanowires by source and drain electrodes and coating them with a thin layer of Pd. Hydrogen sensing experiments using the fabricated devices show high sensitivity response (ppm detection limit at room temperature) and excellent recovery. This work opens up the possibility of using high-quality GaN nanowire networks for hydrogen sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2, 101 (2002) doi:10.1021/nl015667d

    Article  CAS  Google Scholar 

  2. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001) doi:10.1126/science.1062711

    Article  PubMed  ADS  CAS  Google Scholar 

  3. L. Voss, B.P. Gila, S.J. Pearton, H.T. Wang, F. Ren, J. Vac. Sci. Technol. B 23, 2373 (2005) doi:10.1116/1.2110343

    Article  CAS  Google Scholar 

  4. K.I. Lundstrom, M.S. Shivaraman, C.M. Svensson, J. Appl. Phys. 46, 3876 (1975) doi:10.1063/1.322185

    Article  CAS  Google Scholar 

  5. G. Steinhoff, M. Hermann, W.J. Schaff, L.F. Eastman, M. Stutzmann, M. Eickhoff, Appl. Phys. Lett. 83, 177 (2003) doi:10.1063/1.1589188

    Article  ADS  CAS  Google Scholar 

  6. A. Spetz, P. Tobias, L. Unéus, H. Svenningstorp, L.-G. Ekedahl, I. Lundström, Sens. Actuators B Chem. 70, 67 (2000) doi:10.1016/S0925-4005(00)00559-1

    Article  Google Scholar 

  7. E.J. Connolly, G.M. O’Halloran, H.T.M. Pham, P.M. Sarro, P.J. French, Sens. Actuators A Phys. 99, 25 (2002) doi:10.1016/S0924-4247(01)00885-8

    Article  Google Scholar 

  8. H. Svenningstorp, P. Tobias, I. Lundström, P. Salomonsson, P. Mårtensson, L.G. Ekedahl, A. Lloyd Spetz, Sens. Actuators B Chem. 57, 159 (1999) doi:10.1016/S0925-4005(99)00140-9

    Article  Google Scholar 

  9. V. Dobrokhotov, D.N. McIlroy, M.G. Norton, A. Abuzir, W.J. Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux, C. Berven, J. Appl. Phys. 99, 104302 (2006) doi:10.1063/1.2195420

    Article  ADS  Google Scholar 

  10. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin. Appl. Phys. Lett. 86, 243503 (2005) doi:10.1063/1.1949707

    Article  ADS  Google Scholar 

  11. I. Sayago, E. Terrado, E. Lafuente, M.C. Horrillo, W.K. Maser, A.M. Benito, R. Navarro, E.P. Urriolabeitia, M.T. Martinez, J. Gutierrez, Synth. Met. 148, 15 (2005) doi:10.1016/j.synthmet.2004.09.013

    Article  CAS  Google Scholar 

  12. Y. Lu, J. Li, J. Han, H.-T. Ng, C. Binder, C. Partridge, M. Meyyappan, Chem. Phys. Lett. 391, 344 (2004) doi:10.1016/j.cplett.2004.05.029

    Article  ADS  CAS  Google Scholar 

  13. H.T. Wang, T.J. Anderson, F. Ren, C. Li, Z.-N. Low, J. Lin, B.P. Gila, S.J. Pearton, A. Osinsky, A. Dabiran, Appl. Phys. Lett. 89, 242111 (2006) doi:10.1063/1.2408635

    Article  ADS  Google Scholar 

  14. O. Lupan, G. Chai, L. Chow, Microelectron. J. 38, 1211 (2007) doi:10.1016/j.mejo.2007.09.004

    Article  CAS  Google Scholar 

  15. B. Wang, L.F. Zhu, Y.H. Yang, N.S. Xu, G.W. Yang, J. Phys. Chem. C 112, 6643 (2008) doi:10.1021/jp8003147

    Article  CAS  Google Scholar 

  16. M.A. Reshchikov, H. Morkoc, J. Appl. Phys. 97, 061301 (2005) doi:10.1063/1.1868059

    Article  ADS  Google Scholar 

  17. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964) doi:10.1063/1.1753975

    Article  ADS  CAS  Google Scholar 

  18. L. Tien, P. Sadik, D.P. Norton, L. Voss, S.J. Pearton, H.T. Wang, B.S. Kang, F. Ren, J. Jun, J. Lin, Appl. Phys. Lett. 87, 222106 (2005) doi:10.1063/1.2136070

    Article  Google Scholar 

  19. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005) doi:10.1016/j.pmatsci.2004.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kerry Siebein and the staff at the Major Analytical Instrumentation Center (MAIC) at the University of Florida for their assistance with TEM and XRD. This work was␣funded in part by NSF (CTS-0301178 and DMR070416) and ARO (J.M. Zavada). Jason L. Johnson acknowledges support from the NSF South East Alliance for Graduate Education and the Professoriate (SEAGAP) Award, and the National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM) Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ant Ural.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J.L., Choi, Y., Ural, A. et al. Growth and Characterization of GaN Nanowires for Hydrogen Sensors. J. Electron. Mater. 38, 490–494 (2009). https://doi.org/10.1007/s11664-008-0596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0596-z

Keywords

Navigation