Skip to main content
Log in

Thermodynamics of the Fe-Nb-C-N system and the solubility of niobium carbonitrides in austenite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solubility of niobium in microalloyed austenite has been analyzed using a thermodynamic description of the Fe-Nb-C-N system. The description of this system forms an important basis for calculations of precipitation of niobium carbonitrides in microalloyed steels. Previously presented thermodynamic descriptions are combined with a new description of the Fe-Nb-N system, and equilibria in the quaternary system are calculated. New experiments were performed on Nb, Nb-Ti, and Nb-Ti-V microalloyed steels to confirm the calculated results. The results of theoretical calculations show good agreement with the experimental data on dissolution/precipitation of Nb carbonitrides in microalloyed austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Va :

Vacant interstitial sites

y i :

site fraction of the component i (i represents Fe, Nb, N, or Va)

M:

represents the element Nb or Fe

0 G M :

Gibbs energy of the pure element M in a hypothetical nonmagnetic state

0 G VaM:N :

Gibbs energy of a hypothetical state where all interstitial sites are filled with N

0 G liqM :

Gibbs energy of liquid M

E G m :

excess Gibbs energy

mg G m :

magnetic contribution to the Gibbs energy

L A,B:C :

parameter representing the interaction between A and B with C on the second sublattice

References

  1. K. Narita and S. Koyama: Kobe Steel Eng. Rep., 1966, vol. 16, p. 179.

    Google Scholar 

  2. H. Nordberg and B. Aaronsson: J. Iron Steel Inst., 1968, vol. 206, pp. 1263–67.

    CAS  Google Scholar 

  3. K.J. Irvine, F.B. Pickering, and T. Gladman: J. Iron Steel Inst., 1976, vol. 205, pp. 161–82.

    Google Scholar 

  4. E.J. Palmiere: Microalloying ’95, Pittsburgh, 1995, ISS-AIME, Warrendale, PA, 1995, pp. 307–20.

    Google Scholar 

  5. V.K. Lakshmanan and J.S. Kirkadly: Metall. Trans. A, 1984, vol. 15A, pp. 541–44.

    CAS  Google Scholar 

  6. R.C. Hudd, A. Jones, and M.N. Kale: J. Iron Steel Inst., 1971, vol. 209, pp. 297–301.

    Google Scholar 

  7. T.H. Hoogendorn and M.J. Spanraft: Microalloying ’75, Washington, DC, 1975, Union Carbide Corporation, New York, NY, 1977, pp. 75–85.

    Google Scholar 

  8. K. Balasubramanian and J.S. Kirkaldy: Can. Metall. Q., 1989, vol. 28, pp. 301–15.

    CAS  Google Scholar 

  9. J.G. Gurevic: Czern. Metall., 1960, No. 6, p. 59.

  10. T.H. Johansen, N. Christensen, and B. Augland: Trans. AIME, 1967, vol. 239, pp. 1651–55.

    CAS  Google Scholar 

  11. B. Sundman, B. Jansson, and J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–59.

    Article  CAS  Google Scholar 

  12. M. Hillert and L.I. Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    CAS  Google Scholar 

  13. O. Redlich and A.T. Kister: Ind. Eng. Chem., 1948, vol. 40, p. 153.

    Google Scholar 

  14. M. Hansen: Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1958, pp. 670–77 and 983.

    Google Scholar 

  15. R. Hultgren, R.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973, pp. 844–46.

    Google Scholar 

  16. D. Kubachewski: Iron Binary Phase Diagrams, Springer-Verlag, Berlin, 1982, pp. 70–73.

    Google Scholar 

  17. D.A. Read, G.C. Hallam, M.S. Sahota, and A. Mustaffa: Physica, 1977, vols 86B–88B, pp. 66–69.

    Google Scholar 

  18. L. Kaufman and H. Nesor: CALPHAD, 1978, vol. 2, pp. 55–63 and 117.

    Article  CAS  Google Scholar 

  19. E. Paul and L. Swartzendruber: J. Bull. Alloy Phase Diagrams, 1986, vol. 7, p. 286.

    Google Scholar 

  20. R.J. Hawkins: Chemical Metallurgy of Iron and Steel, BSC Proc. ISI, London, 1973, pp. 310–13.

  21. H. Ohtani, T. Nishizawa, T. Tanaka, and M. Hasebe: Proc. Japan-Canada Sem. on Secondary Steelmaking, CSIRA and ISIJ, Tokyo, 1985, pp. J-7-1 and J-7-12.

  22. T. Nishizawa, H. Ohtani, and M. Hasebe: CALPHAD, 1989, vol. 13, pp. 183–204.

    Article  Google Scholar 

  23. H. Ohtani, M. Hasebe, and T. Nishizawa: CALPHAD, 1986, vol. 10, pp. 204–07.

    Google Scholar 

  24. K. Balasubramanian, A. Kroupa, and J.S. Kirkaldy: Metall. Trans. A, 1992, vol. 23A, pp. 729–44.

    CAS  Google Scholar 

  25. R.C. Das, R. Jha, and T. Mukherjee: J. Alloy Phase Diagrams, 1986, vol. 2, pp. 131–40.

    CAS  Google Scholar 

  26. E. Rudy, S. Windisch, and C.E. Brukl: Planseeberichte Pulvermetallurige, 1968, vol. 16, p. 3.

    CAS  Google Scholar 

  27. O. Kubaschewski: Iron Binary Phase Diagrams, Springer-Verlag, New York, NY, 1982.

    Google Scholar 

  28. W. Huang: Z. Metallkd., 1990, vol. 81, pp. 397–404.

    CAS  Google Scholar 

  29. Y.V. Levinsky: Russ. Metall. (Metally), 1974, vol. 1, pp. 34–37.

    Google Scholar 

  30. E. Gebhardt, E. Fromm, and D. Jacob: Z. Metallkd., 1964, vol. 55, p. 423–31.

    Google Scholar 

  31. R.P. Elliott and S. Komjathy: Columbium Metall., 1969, vol. 10, p. 367.

    Google Scholar 

  32. N. Kieda, N. Mizutani and M. Kato: Yogyo Kyokaishi, 1986, vol. 94, pp. 73–77.

    CAS  Google Scholar 

  33. A.N. Christensen: Acta Chem. Scand., 1976, vol. 30A, pp. 219–24.

    Article  Google Scholar 

  34. N.S. Bharate, A.D. Kalkote, and S.H. Behere: Ind. J. Phys., 1990, vol. 64B, pp. 228–31.

    CAS  Google Scholar 

  35. H.G. Park, A.B. Gokhale, P. Kumar, and R. Abbaschian: Metall. Trans. B, 1990, vol. 21B, pp. 845–53.

    CAS  Google Scholar 

  36. G.M. Grigorenko, M.M. Nerodenko, I.I. Statkewicz, J.M. Pomarin and I.I. Kalinczuk: Paton Welding Journal, 1990, vol. 2, pp. 273–76.

    Google Scholar 

  37. M. Alam and T. Debroy: Metall. Trans. B, 1988, vol. 19B, pp. 613–16.

    CAS  Google Scholar 

  38. E. Fromm: J. Less-Common Met., 1968, vol. 14, pp. 113–25.

    Article  CAS  Google Scholar 

  39. J.R. Cost and C.A. Wert: Acta Metall., 1963, vol. 1, pp. 231–42.

    Google Scholar 

  40. V.P. Elyutin, E.I. Mozzhukhin, and D.G. Maksimov: Russ. Metall., 1975, No. 1, pp. 98–102.

  41. A.G. Shchurik and I.A. Tomlin: Russ. J. Phys. Chem., 1971, vol. 45, p. 1162.

    Google Scholar 

  42. H.L. Schick: Thermodynamic of Certain Refractory Compounds, Academic Press, New York, NY, 1966, vol. II, pp. 2–77, Table 165.

    Google Scholar 

  43. B. Jansson: Ph.D. Thesis, Royal Institute of Technology, Stockholm, 1984.

    Google Scholar 

  44. K. Frisk: CALPHAD, 1991, vol. 15, pp. 83–110.

    Article  Google Scholar 

  45. A.S. Venkatadri and V. Ramaswamy: J. Alloy Phase Diagrams, 1985, vol. 1, pp. 19–26.

    Google Scholar 

  46. D.B. Evans and R.D. Pehlke: Trans. AIME, 1965, vol. 233, pp. 1620–24.

    CAS  Google Scholar 

  47. P.H. Turnock and R.D. Pehlke: Trans. AIME, 1966, vol. 236, pp. 1540–47.

    CAS  Google Scholar 

  48. Y.M. Pomarin, G.M. Grigorenko, and V.I. Lakomakii: Russ. Metall. (Metally), 1975, No. 5, pp. 61–65.

  49. R.C. Sharma, V.K. Lakshmanan, and J.K. Kirkaldy: Metall. Trans. A, 1984, vol. 15A, pp. 545–53.

    CAS  Google Scholar 

  50. B. Campillo, J.L. Albarran, F. Estevez, D. Lopez and L. Martinez: Scripta Met., 1989, vol. 23, 1989, pp. 1363–68.

    Article  CAS  Google Scholar 

  51. S. Zajac: Swedish Institute for Metals Research, Stockholm, Report in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajac, S., Jansson, B. Thermodynamics of the Fe-Nb-C-N system and the solubility of niobium carbonitrides in austenite. Metall Mater Trans B 29, 163–176 (1998). https://doi.org/10.1007/s11663-998-0019-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0019-9

Keywords

Navigation