Skip to main content
Log in

Significant Improvement of Cleanliness and Macro/Microstructure of As-Cast AISI M42 High-Speed Steel by Mg Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The modification effects of surface-active element Mg on the inclusions and macro/microstructure of as-cast M42 high-speed steel were investigated by microscopy analyses, thermodynamic calculations, and first-principles DFT calculations. The results indicated that Mg treatment changed the inclusion type from MgO·Al2O3 and MnS to MgO and MgS. The contents of O and S as well as the average size and number density of inclusions gradually decreased with the increase of Mg addition amount due to the accelerated floating up of inclusions. Increasing Mg content reduced the secondary dendrite arm spacing and the average thickness of eutectic ledeburite. The refinement of as-cast microstructure by Mg treatment could be attributed to the combined effects of heterogeneous nucleation of primary austenite on MgS inclusions and the solute segregation effect of Mg. The enrichment of solute Mg in the interdendritic regions was identified by ToF-SIMS. Increasing Mg content significantly reduced the precipitation of eutectic carbides by decreasing Mo enrichment and C activity in the residual liquid. Moreover, increasing Mg content inhibited the formation of M6C eutectic carbides and promoted the precipitation of M2C eutectic carbides by increasing C segregation and decreasing Mo segregation, and thus, significantly improved the homogeneity of as-cast macrostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, J. Dai, H.C. Zhu, S.C. Zhang, M.S. Chu, and W. Wu: ISIJ Int., 2020, vol. 60, pp. 564–72.

    Article  CAS  Google Scholar 

  2. D. Bombač, M. Terčelj, M. Fazarinc, and G. Kugler: Mater. Sci. Eng. A, 2017, vol. 703, pp. 438–50.

    Article  Google Scholar 

  3. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, W.C. Jiao, S.C. Zhang, P.B. Wang, and J.H. Zhu: ISIJ Int., 2018, vol. 58, pp. 1267–74.

    Article  CAS  Google Scholar 

  4. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, L.F. Xia, S.C. Zhang, H.C. Zhu, and W. Wu: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2240–51.

    Article  Google Scholar 

  5. M.A. Hamidzadeh, M. Meratian, and A. Saatchi: Mater. Sci. Eng. A., 2013, vol. 571, pp. 193–98.

    Article  CAS  Google Scholar 

  6. E.S. Lee, W.J. Park, J.Y. Jung, and S. Ahn: Metall. Mater. Trans. A., 1998, vol. 29A, pp. 1395–1404.

    Article  CAS  Google Scholar 

  7. L. Lu, L.G. Hou, J.X. Zhang, H.B. Wang, H. Cui, J.F. Huang, Y.A. Zhang, and J.S. Zhang: Mater. Charact., 2016, vol. 117, pp. 1–8.

    Article  CAS  Google Scholar 

  8. F.S. Pan, W.Q. Wang, A.T. Tang, L.Z. Wu, T.T. Liu, and R.J. Cheng: Prog. Nat. Sci-Mater., 2011, vol. 21, pp. 180–86.

    Article  Google Scholar 

  9. H.G. Fu, Q. Xiao, and Y.X. Li: Mater. Sci. Eng. A., 2005, vol. 395, pp. 281–87.

    Article  Google Scholar 

  10. A.S. Chaus: Met. Sci. Heat Treat., 2005, vol. 47, pp. 53–61.

    Article  CAS  Google Scholar 

  11. H. Halfa, M. Eissa, K. El-Fawakhry, and T. Mattar: Steel Res. Int., 2012, vol. 83, pp. 32–42.

    Article  CAS  Google Scholar 

  12. Y.W. Luo, H.J. Guo, X.L. Sun, and J. Guo: Sci. Rep., 2018, vol. 8, p. 4328.

    Article  Google Scholar 

  13. Q.X. Liu, D.P. Lu, L. Lu, Q. Hu, Q.F. Fu, and Z. Zhou: J. Iron Steel Res. Int., 2015, vol. 22, pp. 245–49.

    Article  CAS  Google Scholar 

  14. M. Boccalini and H. Goldenstein: Int. Mater. Rev., 2001, vol. 46, pp. 92–115.

    Article  CAS  Google Scholar 

  15. A.S. Chaus: ISIJ Int., 2005, vol. 45, pp. 1297–1306.

    Article  CAS  Google Scholar 

  16. A.S. Chaus and F.I. Rudnitskii: Met. Sci. Heat Treat., 1989, vol. 31, pp. 121–28.

    Article  Google Scholar 

  17. Y.C. Pan, H. Yang, X.F. Liu, and X.F. Bian: Mater. Lett., 2004, vol. 58, pp. 1912–16.

    Article  CAS  Google Scholar 

  18. X.F. Zhou, X.Y. Yin, F. Fang, and J.Q. Jiang: Adv. Mater. Res., 2011, vol. 217–218, pp. 457–62.

    Article  Google Scholar 

  19. F.X. Yin, L. Wang, Z.X. Xiao, J.H. Feng, and L. Zhao: J. Rare Earths, 2020, vol. 38, pp. 1030–38.

    Article  CAS  Google Scholar 

  20. X.F. Zhou, X.Y. Yin, F. Fang, J.Q. Jiang, and W.L. Zhu: J. Rare Earths, 2012, vol. 30, pp. 1075–78.

    Article  CAS  Google Scholar 

  21. H.Y. Bor, C.C. Chao, and C.Y. Ma: Metall. Mater. Trans. A., 2000, vol. 31A, pp. 1365–73.

    Article  CAS  Google Scholar 

  22. J. Li, J. Li, L.L. Wang, and Q.T. Zhu: Met. Sci. Heat Treat., 2016, vol. 58, pp. 330–34.

    Article  CAS  Google Scholar 

  23. W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.

    Article  CAS  Google Scholar 

  24. Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1226–41.

    Article  Google Scholar 

  25. H. Wang, J. Li, C.B. Shi, and J. Li: Ironmak. Steelmak., 2017, vol. 44, pp. 128–33.

    Article  CAS  Google Scholar 

  26. Q.S. Zhang, Y. Min, H.S. Xu, J.J. Xu, and C.J. Liu: ISIJ Int., 2019, vol. 59, pp. 391–97.

    Article  CAS  Google Scholar 

  27. Z.H. Jiang, Y. Zhuang, Y. Li, and S.J. Li: J. Iron Steel Res. Int., 2013, vol. 20, pp. 6–10.

    Article  CAS  Google Scholar 

  28. T.S. Zhang, D.Y. Wang, C.W. Liu, M.F. Jiang, M. Lü, B. Wang, and S.X. Zhang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 99–103.

    Article  CAS  Google Scholar 

  29. H. Feng, H.B. Li, P.C. Lu, C.T. Yang, Z.H. Jiang, and X.L. Wu: Acta Metall. Sin., 2019, vol. 55, pp. 1457–68.

    CAS  Google Scholar 

  30. Y. Han, H.B. Li, H. Feng, K.M. Li, Y.Z. Tian, and Z.H. Jiang: J. Mater. Sci. Technol., 2021, vol. 65, pp. 210–15.

    Article  Google Scholar 

  31. S.C. Zhang, H.B. Li, Z.H. Jiang, Z.X. Li, J.X. Wu, B.B. Zhang, F. Duan, H. Feng, and H.C. Zhu: J. Mater. Sci. Technol., 2020, vol. 42, pp. 143–55.

    Article  Google Scholar 

  32. Y. Han, H.B. Li, H. Feng, Y.Z. Tian, Z.H. Jiang, and T. He: Mater. Sci. Eng. A, 2021, vol. 814, p. 141235.

    Article  CAS  Google Scholar 

  33. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  34. G.X. Qiu, D.P. Zhan, L. Cao, and H.S. Zhang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1168–79.

    Article  CAS  Google Scholar 

  35. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.

    Article  CAS  Google Scholar 

  36. G. Kresse and D. Joubert: Phys. Rev. B., 1999, vol. 59, pp. 1758–75.

    Article  CAS  Google Scholar 

  37. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  38. H.J. Monkhorst and J.D. Pack: Phys. Rev. B., 1976, vol. 13, pp. 5188–92.

    Article  Google Scholar 

  39. Z. Yu and C.J. Liu: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 772–81.

    Article  Google Scholar 

  40. W. Gong, Z.H. Jiang, L.X. Zhang, C.Y. Chen, and Y.W. Dong: Mater. Sci. Eng. A, 2020, vol. 791, p. 139410.

    Article  CAS  Google Scholar 

  41. H.S. Kim, C.H. Chang, and H.G. Lee: Scr. Mater., 2005, vol. 53, pp. 1253–58.

    Article  CAS  Google Scholar 

  42. Z. Wu, J. Li, C.B. Shi, and L.L. Wang: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 1062–67.

    Article  CAS  Google Scholar 

  43. X. Li, Z.H. Jiang, X. Geng, M.J. Chen, and L.Z. Peng: ISIJ Int., 2019, vol. 59, pp. 1552–61.

    Article  CAS  Google Scholar 

  44. P.D. Ding, G.Q. Shi, and S.Z. Zhou: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 1265–72.

    Article  CAS  Google Scholar 

  45. C.B. Shi, H. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1675–89.

    Article  Google Scholar 

  46. Y.B. Kang and S.H. Jung: ISIJ Int., 2018, vol. 58, pp. 1371–82.

    Article  CAS  Google Scholar 

  47. K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–66.

    Article  CAS  Google Scholar 

  48. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, and D. Feng: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 1596–1607.

    Article  Google Scholar 

  49. J. Sun, D.P. Wang, Y.H. Zhang, C. Sheng, M. Dargusch, G. Wang, D. St John, and Q.J. Zhai: J. Alloys Compd., 2018, vol. 753, pp. 543–50.

    Article  CAS  Google Scholar 

  50. J. Fu, Y.G. Yu, A.R. Wang, and B.P. Chen: J. Mater. Sci. Technol., 1998, vol. 14, pp. 53–56.

    Article  CAS  Google Scholar 

  51. Q. Wang, L.J. Wang, W. Zhang, J.M. Li, and K.C. Chou: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1773–83.

    Article  Google Scholar 

  52. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987–95.

    Article  CAS  Google Scholar 

  53. C.S. Hyun, J. Son, B.K. Min, Y.S. Choi, K.M. Cho, D.H. Cho, and I.M. Park: J. Alloys Compd., 2019, vol. 792, pp. 59–68.

    Article  Google Scholar 

  54. G. Li, P. Lan, J.Q. Zhang, and G.X. Wu: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 452–66.

    Article  Google Scholar 

  55. H.L. Ge, W.V. Youdelis, and G.L. Chen: Mater. Sci. Tech.-Lond., 1989, vol. 5, pp. 1207–11.

    Article  CAS  Google Scholar 

  56. Y. Huang, G.G. Cheng, M.T. Zhu, and W.X. Dai: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 700–13.

    Article  Google Scholar 

  57. L.T. Gui, H. Zhang, Y. Zhao, Y.W. Wang, D.F. Chen, X.Y. Wang, G.Z. Mahmud, and M.J. Long: Materialia, 2021, vol. 20, p. 101266.

    Article  CAS  Google Scholar 

  58. J. Svoboda, F.D. Fischer, and E. Gamsjäger: Acta Mater., 2002, vol. 50, pp. 967–77.

    Article  CAS  Google Scholar 

  59. N. Limodin, L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliègue, and K. Madi: Acta Mater., 2009, vol. 57, pp. 2300–10.

    Article  CAS  Google Scholar 

  60. L.C. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M.X. Guo: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2447–58.

    Article  Google Scholar 

  61. M.J. Aziz and T. Kaplan: Acta Metall., 1988, vol. 36, pp. 2335–47.

    Article  CAS  Google Scholar 

  62. W.J. Boettinger, S.R. Coriell, and R.F. Sekerka: Mater. Sci. Eng., 1984, vol. 65, pp. 27–36.

    Article  CAS  Google Scholar 

  63. C.H. Lupis: Chemical Thermodynamics of Materials, Elsevier Science Publishing B.V., 1983, pp. 241–43.

  64. S.K. Jo, S.H. Kim, and B. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 703–09.

    Article  CAS  Google Scholar 

  65. T. Yoshioka, K. Nakahata, T. Kawamura, and Y. Ohba: ISIJ Int., 2016, vol. 56, pp. 1973–81.

    Article  CAS  Google Scholar 

  66. X. Li, Z.H. Jiang, X. Geng, M.J. Chen, and S. Cui: Steel Res. Int., 2019, vol. 90, p. 1900103.

    Article  Google Scholar 

  67. C.Y. Chou, N.H. Pettersson, A. Durga, F. Zhang, C. Oikonomou, A. Borgenstam, J. Odqvist, and G. Lindwall: Acta Mater., 2021, vol. 215, p. 117044.

    Article  CAS  Google Scholar 

  68. A.F. Andreoli, R.G. Mendes, V.T. Witusiewicz, O. Shuleshova, M.A. van Huis, K. Nielsch, and I. Kaban: Acta Mater., 2021, vol. 221, p. 117416.

    Article  CAS  Google Scholar 

  69. H.C. Zhu, Z.H. Jiang, H.B. Li, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, and G.H. Liu: Steel Res. Int., 2017, vol. 88, p. 1600509.

    Article  Google Scholar 

  70. H.F. Fischmeister, R. Riedl, and S. Karagöz: Metall. Trans. A., 1989, vol. 20, pp. 2133–48.

    Article  Google Scholar 

  71. M. Boccalini, A.V.O. Correa, and H. Goldenstein: Mater. Sci. Tech.-Lond., 1999, vol. 15, pp. 621–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. 51774074, U1960203, and U1908223], Fundamental Research Funds for the Central Universities [Grant Nos. N2125017 and N2025014], Talent Project of Revitalizing Liaoning (Grant No. XLYC1902046) and China National Postdoctoral Program for Innovative Talents [Grant No. BX20200076]. Special thanks are due to the instrumental analysis from Analytical and Testing Centre, Northeastern University.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Bing Li or Hao Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, WC., Li, HB., Feng, H. et al. Significant Improvement of Cleanliness and Macro/Microstructure of As-Cast AISI M42 High-Speed Steel by Mg Treatment. Metall Mater Trans B 53, 1196–1211 (2022). https://doi.org/10.1007/s11663-022-02436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02436-2

Navigation