Skip to main content

Advertisement

Log in

Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

P91 steel weld joint was prepared using the shielded metal arc welding process and four different conditions of weld consumable that provide the different levels of diffusible hydrogen in deposited metal. In the present research, the effects of diffusible hydrogen content on the flexural strength, lower critical stress, and tensile strength of P91 steel welds were also determined with respect to different electrode conditions. To investigate the effect of diffusible hydrogen on multipass welding, top and root side flexural tests were performed. The residual stresses (axial stress and transverse stress) were also measured using the blind hole drilling method for different conditions of welding consumable. The peak value of residual stresses was measured at the center of the weld fusion zone. The maximum value of transverse stress was measured to be 355 MPa for case II (6.21 mL/100 g of diffusible hydrogen), while the maximum axial stress was about 218 MPa for case IV (12.43 mL/100 g of diffusible hydrogen). A three-dimensional finite element simulation was also performed to predict the residual stress distribution and thermal profile along the welded joint. The experimentally determined residual stresses correlated well with the numerically estimated residual stresses. The diffusible hydrogen content was not observed to have any significant effect on the residual stresses. The corrected residual stress values were also predicted by considering the plasticity-induced error. However, the flexural performance of the welded joint was affected by the diffusible hydrogen content. The top and root flexural strength was measured to be optimum for the low level of diffusible hydrogen content, and the values decreased with an increase in diffusible hydrogen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Aghajani, C. Somsen, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 5093–5106.

    Article  CAS  Google Scholar 

  2. C. Pandey and M.M. Mahapatra: J. Mater. Eng. Performance, 2016, vol. 25, pp. 2195–2210.

    Article  CAS  Google Scholar 

  3. C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, and A. Srivastava: Mater. Sci. Eng. A, 2017, vol. 695, pp. 291–301.

    Article  CAS  Google Scholar 

  4. M. Dewitte and C. Coussement: Mater. High Temp., 1991, vol. 9, pp. 178–84.

    Article  CAS  Google Scholar 

  5. I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev: Metall. Mater. Trans. A, 2018, vol. 49A.

  6. B. Silwal, L. Li, A. Deceuster, and B. Griffiths: Weld. Res., 2013, vol. 92, pp. 80s–87s.

    Google Scholar 

  7. X. Li, M.T. Cabrillat, and Y. Lejeail: Study Modif. 9Cr-lMo Welds, 2006, vol. 43.

  8. G.A. Webster and A.N. Ezeilo: Int. J. Fatigue, 2001, vol. 23, pp. 375–83.

    Article  Google Scholar 

  9. P. Dong and P. Dong: Sci. Technol. Weld. Join., 2004, vol. 10, pp. 389–98.

    Article  Google Scholar 

  10. P.G. Kumar and K. Yu-ichi: Trans. JWRI, 2013, vol. 42, pp. 39–62.

    Google Scholar 

  11. C. Pandey, M.M. Mahapatra, and P. Kumar: Arch. Civil Mech. Eng., 2018, vol. 18, pp. 1000–11.

    Article  Google Scholar 

  12. A.H. Yaghi, T.H. Hyde, A.A. Becker, and W. Sun: IMechE: J. Strain Analysis, 2008, vol. 43, pp. 275–93.

    Google Scholar 

  13. M. Zubairuddin, S.K. Albert, M. Vasudevan, S. Mahadevan, V. Chaudhri, and V.K. Suri: Mater. Manufact. Processes, 2016, vol. 31, pp. 366–71.

    Article  CAS  Google Scholar 

  14. D. Dean and M. Hidekazu: Comput. Mater. Sci., 2006, vol. 37, pp. 209–19.

    Article  Google Scholar 

  15. H. Murakawa, B. Miloslav, V. Adan, R. Sherif, D. Cartin, D. David, and N. Kamran: Trans. JWRI, 2008, vol. 37, pp. 75–80.

    CAS  Google Scholar 

  16. S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, and I.A. Shibli: Mater. Sci. Eng. A, 2012, vol. 534, pp. 663–72.

    Article  CAS  Google Scholar 

  17. J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 1387–95.

    Article  CAS  Google Scholar 

  18. K.A. Venkata, S. Kumar, H.C. Dey, D.J. Smith, and P.J. Bouchard: Proc. Eng., 2014, vol. 86, pp. 223–33.

    Article  CAS  Google Scholar 

  19. T.C. Chuvas, P.S.P. Garcia, J.M. Pardal, and P.C. da Fonseca: Mater. Res., 2015, vol. 18, pp. 614–21.

    Article  CAS  Google Scholar 

  20. S. Kulkarni, P.K. Ghosh, and S. Ray: ISIJ Int., 2008, vol. 48, pp. 1560–69.

    Article  CAS  Google Scholar 

  21. S. Kim, J. Kim, and W. Lee: J. Mater. Process. Technol., 2009, vol. 209, pp. 3905–13.

    Article  CAS  Google Scholar 

  22. Y. Sattari-Far and I. Javadi: Int. J. Press. Vess. Pip., 2008, vol. 85, pp. 265–74.

    Article  CAS  Google Scholar 

  23. P. Dong: J. Press. Vess. Technol., 2001, vol. 123, pp. 207–13.

    Article  CAS  Google Scholar 

  24. N. Saini, C. Pandey and M.M. Mahapatra: Int. J. Hydrog. Energy, 2017, 42, 17328-38.

    Article  CAS  Google Scholar 

  25. C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini: J. Eng. Mater. Technol., 2017, vol. 139, pp. 1–11.

    Article  Google Scholar 

  26. S.K. Albert, V. Ramasubbu, S.I.S. Raj, and A.K. Bhaduri: Weld. World, 2011, vol. 55, pp. 66–74.

    Article  CAS  Google Scholar 

  27. X. Yue: Weld. World, 2014, vol. 59, pp. 77–89.

    Article  Google Scholar 

  28. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava: J. Manufact. Processes, 2017, vol. 28, pp. 220–34.

    Article  Google Scholar 

  29. C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini (2017) Trans. Ind. Inst. Met. doi: https://doi.org/10.1007/s12666-017-1144-4.

    Article  Google Scholar 

  30. J.N. Dupont and A.R. Marder: Weld. Res. Suppl., 1995, vol. 74, pp. 406–16.

    Google Scholar 

  31. C. Pandey, A. Giri, and M.M. Mahapatra: Int. J. Steel Struct., 2016, vol. 16, pp. 333–45.

    Article  Google Scholar 

  32. C. Pandey, N. Saini, M.M. Mahapatra, and P. Kumar: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 17695–17712.

    Article  CAS  Google Scholar 

  33. A. Giri, C. Pandey, M.M. Mahapatra, K. Sharma, and P.K. Singh: Meas, 2015, vol. 65, pp. 41–49.

    Article  Google Scholar 

  34. A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, G. Hilson, S. Simandjuntak, P.E.J. Flewitt, and D.J. Smith: J. Press. Vess. Technol., 2010, vol. 132, pp. 1–10.

    Article  Google Scholar 

  35. L.X. Jang, X.F. Peng, and B.X. Wang: Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 4465–73.

    Article  Google Scholar 

  36. J. Goldak: Metall. Trans. A, 1986, vol. 17A, pp. 17–26.

    Google Scholar 

  37. B. Brickstad and B.L. Josefson: Int. J. Press. Vess. Pip., 1998, vol. 75, pp. 11–25.

    Article  CAS  Google Scholar 

  38. C. Liu, J.X. Zhang, and C.B. Xue: Fus. Eng. Design, 2011, vol. 86, pp. 288–95.

    Article  CAS  Google Scholar 

  39. C. Pandey, N. Saini, M.M. Mahapatra, and P. Kumar: Eng. Fail. Analysis, 2016, vol. 71, pp. 131–47.

    Article  Google Scholar 

  40. C. Pandey, A. Giri, M.M. Mahapatra, and P. Kumar: Met. Mater. Int., 2017, vol. 23, pp. 148–62.

    Article  CAS  Google Scholar 

  41. Y. Wang, R. Kannan, and L. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5680–84.

    Article  Google Scholar 

  42. C. Pandey and M.M. Mahapatra: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2761–75.

    Article  CAS  Google Scholar 

  43. M.M. Mahapatra, G.L. Datta, B. Pradhan, and N.R. Mandal: Int. J. Press. Vess. Pip., 2006, vol. 83, pp. 721–29.

    Article  Google Scholar 

  44. N. Guo, Z. Yang, M. Wang, X. Yuan, and J. Feng: Strength Mater., 2015, vol. 47, pp. 12–18.

    Article  CAS  Google Scholar 

  45. H.L. Li, D. Liu, Y.T. Yan, N. Guo, and J.C. Feng: J. Mater. Process. Technol., 2016, vol. 238, pp. 423–30.

    Article  CAS  Google Scholar 

  46. C.A. Hippsley: Acta Metall., 1987, vol. 35, pp. 2399–2416.

    Article  CAS  Google Scholar 

  47. B.K. Choudhary and E. Isaac Samuel: J. Nucl. Mater., 2011, vol. 412, pp. 82–89.

    Article  CAS  Google Scholar 

  48. S. Sathyanarayanan, A. Moitra, K.G. Samuel, G. Sasikala, S.K. Ray, and V. Singh: Mater. Sci. Eng. A, 2008, vol. 488, pp. 519–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Additional information

Manuscript submitted November 24, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, C., Mahapatra, M.M., Kumar, P. et al. Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels. Metall Mater Trans B 49, 2881–2895 (2018). https://doi.org/10.1007/s11663-018-1314-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1314-8

Keywords

Navigation