Skip to main content
Log in

Undercooling and Wettability Behavior of Interstitial-Free Steel on TiN, Al2O3 and MgAl2O4 Under Controlled Oxygen Partial Pressure

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The heterogeneous undercooling degree of interstitial-free steel (IF steel) on various substrates was measured through observing the recalescence phenomenon by sessile drop method at the oxygen partial pressure of 10−23 atm, where there was no obvious interaction between the steel and the substrate. The wetting behavior of liquid IF steel against different substrates was also studied during the sessile drop test. The results suggested that the undercooling degree increased with the increase of cooling rate, and the effective contact surface area between the liquid steel and the solid substrate could not fully explain the undercooling behavior of the designed cases as there is no interaction layer. Furthermore, a method to calculate the critical contact angle for IF steel against its substrate was developed in this study, which could be adapted to explain the undercooling variance of IF steel with the change of its substrate. The undercooling degree increased with the increase of the critical contact angle, and the critical contact angle was also improved with the increase of lattice disregistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. B. Pattnaik, S. Das, B. B. Jha, N. Prasanth. J. Mater. Res. Technol., 2015, vol. 4, No.2, pp. 171–179.

    Article  Google Scholar 

  2. H.T. Li, Y. Wang, Z. Fan. Acta Materialia, 2012, vol.60, pp. 1528–1537.

    Article  Google Scholar 

  3. Z. Fan. Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1409-1417.

    Article  Google Scholar 

  4. W.Z. Mu, P.G. Jonsson, H. Shibata, K. Nakajima, Steel Res. Int., 2016, vol.87, pp. 339-348.

    Article  Google Scholar 

  5. W.Z. Mu, P.G. Jonsson, K. Nakajima, J. Mater. Sci., 2016, vol.51, pp. 2168-2180.

    Article  Google Scholar 

  6. H. Yoshioka, Y. Tada, K. Kunimine, T. Furuichi, Y. Hayashi. Acta Materialia, 2006, vol. 54, pp. 757-763.

    Article  Google Scholar 

  7. H. Yoshioka, Y. Tada, K. Kunimine, T. Furuichi, Y. Hayashi. Acta Materialia, 2006, vol. 54, pp. 765-771.

    Article  Google Scholar 

  8. B. Bramfitt. Metall. Trans, 1970, vol.1, pp. 1987-1994.

    Article  Google Scholar 

  9. K. Nakajima, H. Hasegawa, S. Khumkoa. Metall. Mater. Trans. B, 2003, vol. 34B, pp. 539-547.

    Article  Google Scholar 

  10. T. Suzuki, J. Inoue, and T. Koseki. ISIJ International, 2007, vol. 47, No. 6, pp. 847-852.

    Article  Google Scholar 

  11. M.E. Valdez, H.Shibata, and A.W. Cramb. Metall. Mater. Trans. B, 2006, vol. 37B, pp. 959-965.

    Article  Google Scholar 

  12. B.A. Mueller and J.H. Perepezko. Metall. Trans. A, 1987, vol. 18A, pp. 1143-1149.

    Article  Google Scholar 

  13. M.E. Valdez, P. Uranga, K. Fuchigami, H. Shibata, A. W. Cramb. Metall. Mater. Trans. B, 2006, vol. 37B, pp. 811-821.

    Article  Google Scholar 

  14. K. Nakajima, H. Hasegawa, S. Khumkoa, M. Hayashi (2006) ISIJ Int., vol. 46, pp. 801-06.

    Article  Google Scholar 

  15. K. Nakajima, H. Ohta, H. Suito, P. Jonsson, ISIJ Int, 2006, vol. 46, pp. 807-813.

    Article  Google Scholar 

  16. J. Cheo, H.G. Kim, Y. Kang, J. Lee. Metall. Mater. Trans. B, 2014, vol.45, pp. 1589-1592.

    Article  Google Scholar 

  17. W.B. Guan, Y.L. Gao, Q.J. Zhai. Materials Letters, 2005, vol. 59, pp. 1701–1704.

    Article  Google Scholar 

  18. H. Shibata, X.F. Jiang, M. Valdez, and A.W. Cramb. Metall. Mater. Trans. B, 2004, vol. 35B, pp. 179-180.

    Article  Google Scholar 

  19. J.Z. Yun, F. Chang, W.H. Ma. Sci. China E, 2000, vol. 43, No. 2, pp. 113-118.

    Google Scholar 

  20. K. Nakashima, K. Takihira, T. Miyazaki, and K. Mori. J. Am. Ceram. Soc. 1993, vol. 76, No.12, pp. 3000-8.

    Article  Google Scholar 

  21. M. Shin, J. Lee, and J. Park. ISIJ International, 2008, vol.48, No.12, pp. 1665-1669.

    Article  Google Scholar 

  22. X.C. Luo, W.L. Wang, F.J. Ma. ISIJ International,2016, vol.56, No.8, pp. 1333-1341.

    Article  Google Scholar 

  23. H. Shibata, Y. Watanabe, K. Nakajima, and S. Kitamura. ISIJ International, 2009, vol.49, No.7, pp. 985-991.

    Article  Google Scholar 

  24. W. Khalifa, F.H. Samuel, and J.E. Gruzleski. Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3233-50.

    Article  Google Scholar 

  25. T. Hibiya, K. Morohoshi, S. Ozawa. J. Mater. Sci, 2010, vol. 45, pp. 1986-1992.

    Article  Google Scholar 

  26. Z. Jun, K. Mukai. ISIJ International, 1998, vol. 38, No.10, pp. 1039-1044.

    Article  Google Scholar 

  27. A.J. Brown, H.B. Dong, P.B. Howes, C.L. Nicklin. Acta Materialia, 2014, vol. 77, pp. 60-63.

    Article  Google Scholar 

  28. M. Qian. Acta Materialia, 2007, vol. 55, pp. 943-953.

    Article  Google Scholar 

  29. A.T. Appapillai, C. Sachs, and E.M. Sachs. Journal of Applied Physics, 2011, vol.109, pp. 1-7.

    Google Scholar 

  30. F. Spaepen, R.B. Meyer. Scripta Metallurgica, 1976, vol.10, pp. 37-43.

    Article  Google Scholar 

  31. Y.Z. Cheng, X.H. Shi, F. Liu, Y.H. Zhou. Progress in Natural Science: Materials International, 2012, vol. 22, No.3, pp.258-262.

    Article  Google Scholar 

  32. H.M. Lu, Z. Wen, Q. Jiang. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, vol.278, pp. 160-165.

    Article  Google Scholar 

  33. K. Mondal, A. Kumar, G. Gupta, B.S. Murty. Acta Materialia, 2009, vol. 57, pp. 3422–3430.

    Article  Google Scholar 

  34. J.S. Park, C. Lee, and J.H. Park. Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550-1563.

    Article  Google Scholar 

  35. I. Jimbo, A.W. Cramb. Metall. Trans. B, 1993, vol.24, pp. 5-10.

    Article  Google Scholar 

  36. G.W. Lee, S. Jeon, and D.H. Kang. Cryst. Growth. Des. 2013, vol.13, pp. 1786-1792.

    Article  Google Scholar 

  37. B.L. Jones and G.M. Weston: J. Austr. Inst. Met., 1970, vol. 15 (4), pp. 189-94.

    Google Scholar 

  38. C. Wan, P. Krisalis, B. Drevet, and N. Eustathopoulos: Mater. Sci. Eng., A, 1996, vol. 207, pp. 181-87.

    Article  Google Scholar 

  39. V. Merlin and N. Eustathopoulos: J. Mater. Sci., 1995, vol. 30, pp. 3619-24.

    Article  Google Scholar 

  40. C.V. Thompson, F. Spaepen: Acta Metall., 1983, 31(12): 2021-2027.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Science Foundation of China (Nos. 51661130154, 51322405) and the Natural Science Foundation of Hunan Province, China (14JJ1005), and the grant from Newton Advanced fellowship (NA150320) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted December 10, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, E., Zou, G., Wang, W. et al. Undercooling and Wettability Behavior of Interstitial-Free Steel on TiN, Al2O3 and MgAl2O4 Under Controlled Oxygen Partial Pressure. Metall Mater Trans B 48, 1014–1023 (2017). https://doi.org/10.1007/s11663-016-0898-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0898-0

Keywords

Navigation