Skip to main content
Log in

Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This work is focused on the possibilities of preparing Ni-Ti46 wt pct alloy by powder metallurgy methods. The self-propagating high-temperature synthesis (SHS) and combination of SHS reaction, milling, and spark plasma sintering consolidation (SPS) are explored. The aim of this work is the development of preparation method with the lowest amount of undesirable phases (mainly Ti2Ni phase). The SHS with high heating rate (approx. 200 and 300 K min−1) was applied. Because the SHS product is very porous, it was milled in vibratory disk milling and consolidated by SPS technique at temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C). The microstructures of samples prepared by SHS reaction and combination of SHS reaction, milling, and SPS consolidation are compared. The changes in microstructure with increasing temperature of SPS consolidation are observed. Mechanical properties are tested by hardness measurement. The way to reduce the amount of Ti2Ni phase in structure is leaching of powder in 35 pct hydrochloric acid before SPS consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. [1] F. Wenbin, H. Lianxi, H. Wenxiong, W. Erde, L. Xiaoqing: Materials Science and Engineering: A, 2005, vol. 403, pp. 186-190.

    Article  Google Scholar 

  2. [2] M. Yamaguchi, H. Inui, K. Ito: Acta Materialia, 2000, vol. 48, pp. 307-322.

    Article  Google Scholar 

  3. [3] P. Novák, I. Marek, L. Mejzlíková, A. Michalcová, D. Vojtěch: Materials and technology, 2012, vol. 46, pp. 559-562.

    Google Scholar 

  4. [4] K. Otsuka, X. Ren: Progress in Materials Science, 2005, vol. 50, pp. 511-678.

    Article  Google Scholar 

  5. [5] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson: Materials & Design, 2014, vol. 56, pp. 1078-1113.

    Article  Google Scholar 

  6. [6] L. Zhang, Y.Q. Zhang, Y.H. Jiang, R. Zhou: Journal of Alloys and Compounds, 2015, vol. 644, pp. 513-522.

    Article  Google Scholar 

  7. [7] Z. Zhang, J. Frenzel, K. Neuking, G. Eggeler: Acta Materialia, 2005, vol. 53, pp. 3971-3985.

    Article  Google Scholar 

  8. [8] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri: Progress in Materials Science, 2012, vol. 57, pp. 911-946.

    Article  Google Scholar 

  9. T. Duerig, A. Pelton, Ch. Trepanier, Nitinol - PART I Mechanism and Behavior, SMST e-Elastic newsletter, ASM International (2011).

  10. [10] N. Nayan, Govind, C.N. Saikrishna, K.V. Ramaiah, S.K. Bhaumik, K.S. Nair, M.C. Mittal: Materials Science and Engineering: A, 2007, vol. 465, pp. 44-48.

    Article  Google Scholar 

  11. [11] J. Frenzel, Z. Zhang, K. Neuking, G. Eggeler: Journal of Alloys and Compounds, 2004, vol. 385, pp. 214-223.

    Article  Google Scholar 

  12. [12] S.K. Sadrnezhad, S.B. Raz: Metallurgical and Materials Transactions B, 2005, vol. 36, pp. 395-403.

    Article  Google Scholar 

  13. [13] Y. Kabiri, A. Kermanpur, A. Foroozmehr: Vacuum, 2012, vol. 86, pp. 1073-1077.

    Article  Google Scholar 

  14. [14] M. Whitney, S.F. Corbin, R.B. Gorbet: Acta Materialia, 2008, vol. 56, pp. 559-570.

    Article  Google Scholar 

  15. [15] P. Novák, L. Mejzlíková, A. Michalcová, J. Čapek, P. Beran, D. Vojtěch: Intermetallics, 2013, vol. 42, pp. 85-91.

    Article  Google Scholar 

  16. [16] P. Novák, H. Moravec, P. Salvetr, F. Průša, J. Drahokoupil, J. Kopeček, M. Karlík, T. F. Kubatík: Materials Science and Technology, 2015, vol. 31, pp. 1886-1893.

    Article  Google Scholar 

  17. [17] P. Novák, T. Veselý, I. Marek, P. Dvořák, V. Vojtěch, P. Salvetr, M. Karlík, P. Haušild, J. Kopeček: Metallurgical and Materials Transactions B, 2016, vol. 47, pp. 932-938.

    Article  Google Scholar 

  18. [18] P. Novák, P. Pokorný, V. Vojtěch, A. Knaislová, A. Školáková, J. Čapek, M. Karlík, J. Kopeček: Materials Chemistry and Physics, 2015, vol. 155, pp. 113-121.

    Article  Google Scholar 

  19. [19] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: Journal of Materials Science, 2006, vol. 41, pp. 763-777.

    Article  Google Scholar 

  20. [20] A. Bansiddhi, D.C. Dunand: Intermetallics, 2007, vol. 15, pp. 1612-1622.

    Article  Google Scholar 

  21. G. Chen, K.-D. Liss, P. Cao: Acta Materialia, 2014, vol. 67, pp. 32-44.

    Article  Google Scholar 

  22. [22] M. Nishida, C.M. Wayman, T. Honma: Metallurgical Transactions A, 1986, vol. 17, pp. 1505-1515.

    Article  Google Scholar 

  23. [23] S. Wisutmethangoon, N. Denmud, L. Sikong: Materials Science and Engineering: A, 2009, vol. 515, pp. 93-97.

    Article  Google Scholar 

  24. [24] M. V. Nevitt: Trans. TMS-AIME, 1960, vol. 218, pp. 327-331.

    Google Scholar 

Download references

Acknowledgment

Financial support from specific university research (MSMT No 20-SVV/2016) and Czech Science Foundation, Project No. 14-03044S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Salvetr.

Additional information

Manuscript submitted April 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvetr, P., Kubatík, T.F., Pignol, D. et al. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique. Metall Mater Trans B 48, 772–778 (2017). https://doi.org/10.1007/s11663-016-0894-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0894-4

Keywords

Navigation