Skip to main content
Log in

Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. C. Huang and S. Kou: Weld. J., 2002, 81, pp. 211s-222s.

    Google Scholar 

  2. [2] X. Chai, T. Yuan, S. Kou: Weld. J., 2016, 95, pp. 57s-67s.

    Google Scholar 

  3. [3] M. C. Chaturvedi: Mater. Sci. Forum, 2007, 546, pp. 1163-1170.

    Article  Google Scholar 

  4. J.N. DuPont, J.C. Lippold, and S.D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, NJ, 2009, pp. 118–28, 223–35.

  5. R.G. Thompson, J.J. Cassimus, D.E. Mayo, J.R. Dobbs: Weld. J., 1985, 64, pp. 91s-96s.

    Google Scholar 

  6. [6] S. Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, Inc. New Jersey, USA, 2003, pp. 301-341.

    Google Scholar 

  7. [7] R.S. Mishra and Z.Y. Ma: Mat. Sci. Eng. R, 2005, 50, 1-78.

    Article  Google Scholar 

  8. [8] P.B. Prangnell and C.P. Heason: Acta Mater., 2005, 53, pp. 3179-3192.

    Article  Google Scholar 

  9. [9] T.R. McNelley, S. Swaminathan, J.Q. Su: Scripta Mater., 2008, 58, pp. 349-354.

    Article  Google Scholar 

  10. [10] S.M. Mousavizade, F.M. Ghaini, M.J. Torkamany, J. Sabbaghzadeh, A. Abdollah-Zadeh: Scripta Mater., 2009, 60, 244-247.

    Article  Google Scholar 

  11. [11] Z.M. Beiranvand, F.M. Ghaini, M. Sheikhi, A. Abdollah-Zadeh: Sci. Technol. Weld. Joi., 2013, 18, pp. 473-477.

    Article  Google Scholar 

  12. [12] J.R. Rule, J.M. Rodelas, J.C. Lippold: Weld. J., 2013, 92, pp. 283s-290s.

    Google Scholar 

  13. C. Huang and S. Kou: Weld. J., 2000, 79, pp. 113s-120s.

    Google Scholar 

  14. C. Huang and S. Kou: Weld. J. Res. Suppl., 2004, 83, pp. 50s-58s.

    Google Scholar 

  15. [15] X. Feng, H. Liu, S.S. Babu: Scripta Mater., 2011, 65, pp. 1057-1060.

    Article  Google Scholar 

  16. [16] X. Feng, H. Liu, J.C. Lippold: Mater. Charact., 2013, 82, pp.97-102.

    Article  Google Scholar 

  17. [17] N. Naresh, S.V. Kailas, J. Szpunar, S. Suwas: JOM, 2015, 67, pp. 1014-1021.

    Article  Google Scholar 

  18. W. Lin, J.C. Lippold, W.A. Baeslack: Weld. J., 1993, 71, pp. 135s-153s.

    Google Scholar 

  19. S.T. Mandziej (2005) Hamsa mohideen. In: T. Bollinghaus and H. Herold (eds) Hot Cracking Phenomena in Welds. Springer, Berlin, pp. 347-376.

    Chapter  Google Scholar 

  20. W.F. Savage and C.D. Lundin: Weld. J. Res. Suppl., 1965, 44, pp. 433s-442s.

    Google Scholar 

  21. [21] S. Henry, T. Minghetti, M. Rappaz: Acta Mater., 1998, 46, pp. 6431-6443.

    Article  Google Scholar 

  22. [22] T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz: Nat. Mater., 2006, 5, pp. 660-664.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support (Grant # SR/FST/ETII-049/2011) from the Department of Science and Technology, Government of India, for establishing a Gleeble thermo-mechanical simulation facility at IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Janaki Ram.

Additional information

Manuscript submitted September 22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, G.M., Janaki Ram, G.D. & Kottada, R.S. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219. Metall Mater Trans B 48, 1158–1173 (2017). https://doi.org/10.1007/s11663-016-0892-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0892-6

Keywords

Navigation