Skip to main content
Log in

Estimation of Sintering Kinetics of Magnetite Pellet Using Optical Dilatometer

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

An Erratum to this article was published on 26 October 2016

Abstract

During induration of magnetite pellets, oxidation of magnetite followed by sintering of the oxidized magnetite (hematite) is desirable. Sintering of magnetite which hampers the oxidation of magnetite is aimed to be kept as low as possible. In succession to our earlier study on sintering behavior of oxidized magnetite (hematite), this paper focusses on the sintering behavior of magnetite phase in isolation with an objective to estimate their kinetic parameters. The pellets prepared from the concentrate of LKAB’s mine, which majorly contains (>95 pct) magnetite, are used for the sintering studies. Optical Dilatometer is used to capture the sintering behavior of the magnetite pellet and determine their isothermal kinetics by deducing the three parameters, namely—activation energy (Q), pre-exponential factor (K′), and time exponent (n) with the help of power law and Arrhenius equation. It is interesting to find that the time exponent (n) is decreasing with the increase in sintering temperature. It is also interesting to note that the activation energy for sintering of magnetite pellet shows no single value. From the present investigation, two activation energies—477 kJ/mole [1173 K to 1373 K (900 °C to 1100 °C)] and 148 kJ/mole [1373 K to 1623 K (1100 °C to 1350 °C)]—were deduced for sintering of magnetite, suggesting two different mechanisms operating at lower and other at higher temperatures. The estimated kinetic parameters were used to predict the non-isothermal sintering behavior of magnetite using the sintering kinetic model. Predicted results were validated using experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

δ A,overall :

Overall percentage area change at any instant during induration

δ A,sintering :

Percentage area change due to sintering at any instant during induration

δ A :

Percentage area change at any instant

δ A,true :

Percentage area change when pellet has no pores

α :

Volumetric thermal coefficient of expansion

β :

Area thermal coefficient of expansion

V 0 :

Initial volume of a material

V :

Volume of material at any temperature

V true :

Volume of the pellet if it would have undergone complete sintering with no pores

T 0 :

Initial temperature (t = 0)

T :

Temperature at any instant

γ :

Sintering Ratio of the pellet at any instant in the isothermal section

γ*:

Sintering ratio at the start of the isothermal section

ρ :

Bulk density of the pellet at any instant

ρ true :

True density of the pellet

ρ 0 :

Initial bulk density of pellet

t :

Time for sintering reaction

t*:

Time corresponds if the pellet had attained a sintering ratio of γ * from the start under isothermal condition

t m :

Measured time in isothermal section

n :

Time exponent

\( K_{1}^{\prime } \) :

Pre-exponential factor at high temperatures

\( K_{2}^{\prime } \) :

Pre-exponential factor at low temperatures

Q 1 :

Activation energy at high temperatures

Q 2 :

Activation energy at low temperatures

R :

Universal gas constant

γ t :

Sintering ratio at time t

γ t+t :

Sintering ratio at time t + ∆t

Tt :

Temperature at time t

T t+t :

Temperature at time t + ∆t

K(T t+t ):

Rate constant at t + ∆t

References

  1. S. P. E. Forsmo, S. -. Forsmo, P. -. Samskog, and B. M. T. Björkman: Powder Technol, 2008, vol. 183, pp. 247-59.

    Article  Google Scholar 

  2. S. R. Cooke and W. F. Stowasser Jr: Trans. AIME, 1952, vol. 193, pp. 1223-30.

    Google Scholar 

  3. V. Niiniskorpi: Ironmaking Conference Proceedings, 2001, pp. 767–80.

  4. M. Tang, H.J. Cho, and P.C. Pistorius: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1304–14.

    Article  Google Scholar 

  5. J. R. Wynnyckyj and W. A. McCurdy: Metall Trans., 1974, vol. 5, pp. 2207-15.

    Article  Google Scholar 

  6. P. Semberg, A. Rutqvist, C. Andersson, and B. Björkman: Ironmaking and Steelmaking, 2011, vol. 38, pp. 321–28.

    Article  Google Scholar 

  7. P. Semberg, C. Andersson, and B. Björkman: ISIJ Int., 2013, vol. 53, pp. 391-98.

    Article  Google Scholar 

  8. J. Thurlby, R. Batterham, and R. Turner: Int. J. Miner. Process., 1979, vol. 6, pp. 43-64.

    Article  Google Scholar 

  9. J. Thurlby: Metall. Trans. B, 1988, vol. 19B, pp. 103-12.

    Article  Google Scholar 

  10. R. A. Dave: Can. J. Chem. Eng., 1996, vol. 74, pp. 1004-09.

    Article  Google Scholar 

  11. M. Cross and P. Blot: Metall. and Mater. Trans. B, 1999, vol. 30B, pp. 803-13.

    Article  Google Scholar 

  12. S. Sadrnezhaad, A. Ferdowsi, and H. Payab: Comput. Mater. Sci., 2008, vol. 44, pp. 296-02.

    Article  Google Scholar 

  13. M. Barati: Int. J. Miner. Process., 2008, vol. 89, pp. 30-39.

    Article  Google Scholar 

  14. T.K. SandeepKumar, N.N. Viswanathan, H.M. Ahmed, C. Andersson, B. Björkman: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 635-43.

    Article  Google Scholar 

  15. G. C. Kuczynski: Journal of Applied Physics, 1949, vol. 20, pp. 1160-63.

    Article  Google Scholar 

  16. D. L. Johnson and I. B. Cutler: J. Am. Ceram. Soc., 1963, vol. 46, pp. 545-50.

    Article  Google Scholar 

  17. W. S. Young and I. B. Cutler: J. Am. Ceram. Soc., 1970, vol. 53, pp. 659-63.

    Article  Google Scholar 

  18. J. D. Hansen, R. P. Rusin, M. Teng, and D. L. Johnson: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1129-35.

    Article  Google Scholar 

  19. M. V. Nikolić, V. P. Pavlović, V. B. Pavlović, N. Labus, and B. Stojanović: Mater. Sci. Forum, 2005, vol. 494, pp. 417-22.

    Article  Google Scholar 

  20. P. Dehaudt, L. Bourgeois, and H. Chevrel: J. Nucl. Mater., 2001, vol. 299, pp. 250-59.

    Article  Google Scholar 

  21. W. Zeng, L. Gao, L. Gui, and J. Guo: Ceram. Int., 1999, vol. 25, pp. 723-26.

    Article  Google Scholar 

  22. Z. Holková, L. Pach, V. Kovár, and S. Svetík: Ceramics-Silik., 2003, vol. 47, pp. 13-19.

    Google Scholar 

  23. T. Kutty, K. Khan, P. Hegde, A. Sengupta, S. Majumdar, and H. Kamath: Sci. Sinter., 2003, vol. 35, pp. 125-32.

    Article  Google Scholar 

  24. D. Lahiri, S. Rao, G. Rao, and R. Srivastava: J. Nucl. Mater., 2006, vol. 357, pp. 88-96.

    Article  Google Scholar 

  25. M. Mazaheri, F. Golestani-Fard, and A. Simchi: 10th International Conference and Exhibition of the European Ceramic Society, Berlin, 2007.

  26. Z. Y. Liu, N. H. Loh, K. A. Khor, and S. B. Tor: Scr. Mater., 2001, vol. 44, pp. 1131-37.

    Article  Google Scholar 

  27. R. L. Coble: J. Am. Ceram. Soc., 1958, vol. 41, pp. 55-62.

    Article  Google Scholar 

  28. J. R. Wynnyckyj and T. Z. Fahidy: Metall. Trans., 1974, vol. 5, pp. 991-1000.

    Article  Google Scholar 

  29. A. Karamanov, B. Dzhantov, M. Paganelli, and D. Sighinolfi: Thermochim. Acta, 2013, vol. 553, pp. 1-7.

    Article  Google Scholar 

  30. V. N. Nurni and B. N. Ballal: Treatise in Process Metallurgy, vol. 1, Elsevier, Oxford, UK, 2014.

    Google Scholar 

  31. S.R.B. Cooke and T. E. Ban: Transactions AIME Min Eng., 1952, vol. 6, pp. 1053-58.

    Google Scholar 

  32. D. R. Gaskell: Introduction to the Thermodynamics of Materials, 2nd ed., CRC Press, New York, USA, 2008, pp. 6.

    Google Scholar 

  33. B. J. Skinner: Thermal Expansion - Geological Society of America Memoirs, 1966, vol. 97, pp. 75-96.

    Google Scholar 

  34. D. Taylor: Transactions and journal of the British Ceramic Society, 1985, vol. 84, pp. 121-127.

    Google Scholar 

  35. G. C. Kuczynski: AIME Trans., 1949, vol. 185, pp. 169-78.

    Google Scholar 

  36. R. German and Z. Munir: Metallurgical and Materials Transactions A, 1975, vol. 6, pp. 2229-34.

    Article  Google Scholar 

  37. R. M. German: Sintering Theory and Practice, Wiley Interscience, New York, 1996.

    Google Scholar 

  38. R. German and Z. Munir: J. Am. Ceram. Soc., 1976, vol. 59, pp. 379-83.

    Article  Google Scholar 

  39. R. German and Z. Munir: J. Mater. Sci., 1975, vol. 10, pp. 1719-24.

    Article  Google Scholar 

  40. F. Nichols: Acta Metall., 1968, vol. 16, pp. 103-13.

    Article  Google Scholar 

  41. W. Beere: Journal of Materials Science, 1973, vol. 8, pp. 1717-24.

    Article  Google Scholar 

  42. W. Kingery: J. Appl. Phys., 1960, vol. 31, pp. 833-38.

    Article  Google Scholar 

  43. J. Dedrick and A. Gerds: J. Appl. Phys., 1949, vol. 20, pp. 1042-44.

    Article  Google Scholar 

  44. Z. Xuebin, D. Yunfei, W. Songlin, X. Jie, F. Yi: Ceram. Silik., 2010, vol. 54, pp. 248-252.

    Google Scholar 

  45. R. Dieckmann and H. Schmalzried: Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1977, vol. 81, pp. 344-47.

    Article  Google Scholar 

  46. R. Dieckmann and H. Schmalzried: Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1977, vol. 81, pp. 414-19.

    Article  Google Scholar 

  47. G. Lewis, C. R. A. Catlow, and A. Cormack: Journal of Physics and Chemistry of Solids, 1985, vol. 46, pp. 1227-33.

    Article  Google Scholar 

  48. S. Hallström, L. Höglund, and J. Ågren: Acta Materialia, 2011, vol. 59, pp. 53-60.

    Article  Google Scholar 

  49. H. Schmalzried: Reactivity of Solids, 1988, vol. 5, pp. 269-78.

    Article  Google Scholar 

  50. N. L. Peterson, W. Chen, and D. Wolf: Journal of Physics and Chemistry of Solids, 1980, vol. 41, pp. 709-19.

    Article  Google Scholar 

  51. J. A. Van Orman and K. L. Crispin: Reviews in Mineralogy and Geochemistry, 2010, vol. 72, pp. 757-825.

    Article  Google Scholar 

  52. D. Levy, R. Giustetto, and A. Hoser: Physics and Chemistry of Minerals, 2012, vol. 39, pp. 169-76.

    Article  Google Scholar 

  53. K. D. Becker, V. V. Wurmb, and F. J. Litterst: Journal of Physics and Chemistry of Solids, 1993, vol. 54, pp. 923-35.

    Article  Google Scholar 

  54. K. D. Becker, V. V. Wurmb, and F. J. Litterst: Hyperfine Interactions, 1990, vol. 56, pp. 1431-35.

    Article  Google Scholar 

  55. K. Becker: Solid State Ionics, 1990, vol. 39, pp. 27-35.

    Article  Google Scholar 

  56. F. Litterst: Hyperfine Interactions, 1986, vol. 27, pp. 123-34.

    Article  Google Scholar 

  57. L. Bentell: Scandinivian Journal of Metallurgy, 1981, vol. 10, pp. 205-09.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Hjalmar Lundbohm Research Centre (HLRC) for their financial support. We also thank Ola Eriksson, Daniel Marjavaara, Gustaf Magnusson, Magnus Stafstedt, and Anders Dahlin of LKAB for their technical support. We also thank Prof. S. Seetharaman, an Emeritus professor of Royal Institute of Technology (KTH), Stockholm for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Sandeep Kumar.

Additional information

Manuscript submitted June 3, 2015

An erratum to this article is available at http://dx.doi.org/10.1007/s11663-016-0843-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep Kumar, T.K., Viswanathan, N.N., Ahmed, H.M. et al. Estimation of Sintering Kinetics of Magnetite Pellet Using Optical Dilatometer. Metall Mater Trans B 47, 309–319 (2016). https://doi.org/10.1007/s11663-015-0505-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0505-9

Keywords

Navigation