Skip to main content
Log in

Splash Distribution in Oxygen Steelmaking

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The study of splashing is important in understanding oxygen steelmaking. Splashing creates large interfacial area between reacting surfaces and thereby directly affects the kinetics of steelmaking reactions. In the present cold modeling work, a study of splashing has been carried out for various lance heights and gas flow rates. Sampling of droplets has been done in both radial positions and vertical positions across the bath to investigate the effect of sampling positions in estimation of the droplet generation rate. A novel approach has been developed to estimate the droplet generation rate. The results of the study have been compared with previous investigations. Results show that positioning of sampling is a critical issue and can affect the estimation of droplets present in the emulsion. This study also demonstrates quantitatively how much the droplet generation rate is reduced when the cavity mode changes from splashing to penetrating for different Blowing numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

d :

Nozzle diameter (m)

r :

Nozzle radius (m)

D :

Vessel diameter (m)

l :

Vessel height (m)

H :

Bath height (m)

L :

Lance height (m)

N :

Number of nozzles (−)

θ :

Nozzle angle (°)

ρ g :

Density of gas at pressure 101325 Pa and temperature 273 K (0 °C) (kg/m3)

ρ l :

Density of liquid at pressure 101325 Pa and temperature 273 K (0 °C) (kg/m3)

U g :

Critical gas velocity (m/s)

U 0 :

Gas velocity at nozzle exit (m/s)

U j :

Gas velocity at bath surface (m/s)

g :

Gravitational acceleration (m/s2)

σ :

Surface tension (N/m)

N B :

Blowing number (−)

Q :

Gas flow rate at nozzle exit (L/min)

η :

Constant (−)

W sp :

Weight of droplets collected in different pots (kg)

t s :

Sampling time (seconds)

N sp :

Number of sample pots (−)

V sp :

Volume of a sample pot (m3)

V b :

Volume of each cylinder above the bath (m3)

R B :

Droplet generation rate (kg/s)

F g :

Volume of blown gas (Nm3/s)

R B/F g :

Droplet generation rate per unit volume of blown gas (kg/Nm3)

\( \tau \) :

Residence time (s)

V :

Weight of droplets after reaching steady state (kg)

α :

Level of significance (−)

S :

Standard deviation of samples (−)

σ p :

Standard deviation of population (−)

z :

Standard score (−)

ME:

Margin of error (kg)

References

  1. Subagyo, G.A. Brooks and K.S. Coley: Ironmak. Conf. Proc., 2002, pp 749–762.

  2. N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093-1101.

    Article  Google Scholar 

  3. P. Kozakevitch: Journal of Metals, 1969, vol. 21, pp. 57-68.

    Google Scholar 

  4. C. Cicutti, M. Valdez, T. Pérez, J. Petroni, A. Gómez, R. Donayo, and L. Ferro: 6th Int. Conf. Molten Slags, Fluxes Salts, 2000, p. 367.

  5. H. Meyer, W. Porter, G. Smith and J. Szekely: Journal of Metals, 1968, vol. 20, pp. 35-42.

    Google Scholar 

  6. D. Price: Process Eng. Pyrometall. Symp., 1974, pp. 8–15.

  7. J. Schoop, W. Resch and G. Mahn: Ironmaking and Steelmaking, 1978, vol. 22, pp. 72-79.

    Google Scholar 

  8. B. Trentini: Trans. TMS-AIME, 1968, vol. 242, pp. 2377-88.

    Google Scholar 

  9. O. Tokovoi, A. Stroganov and D. Povolotsky: Steel in the USSR, 1972, vol. 2, pp. 116-117.

    Google Scholar 

  10. R. Urquhart and W. Davenport: Canadian Metallurgical Quarterly, 1973, vol. 12, pp. 507-516.

    Article  Google Scholar 

  11. N. Standish and Q. L. He: ISIJ Int., 1989, vol. 29, pp. 455-461.

    Article  Google Scholar 

  12. Q. L. He and N. Standish: ISIJ Int., 1990, vol. 30, pp. 305-309.

    Article  Google Scholar 

  13. G. Turner and S. Jahanshahi: Trans. Iron Steel Inst. Japan, 1987, vol. 27, pp. 734-739.

    Article  Google Scholar 

  14. M. Millman, A. Overbosch, A. Kapilashrami, D. Malmberg and M. Brämming: Ironmak. Steelmak., 2011, vol. 38, pp. 499-509.

    Article  Google Scholar 

  15. M. S. Millman, A. Kapilashrami, M. Bramming and D. Malmberg: Imphos: improving phosphorus refining. Publications Office of the European Union, Luxembourg, 2011.

    Google Scholar 

  16. N. Molloy: Journal of the Iron and Steel Institute, 1970, vol. 216, pp. 943-50.

    Google Scholar 

  17. M. Alam, G. Irons, G. Brooks, A. Fontana and J. Naser: ISIJ Int., 2011, vol. 51, pp. 1439-1447.

    Article  Google Scholar 

  18. Subagyo, G. A. Brooks, K. S. Coley, and G. A. Irons: ISIJ Int., 2003, vol. 43, pp. 983-989.

    Article  Google Scholar 

  19. S. Sabah and G. Brooks: ISIJ Int., 2014, vol. 4, pp. 836-844.

    Article  Google Scholar 

  20. J. L. Liow and N. B. Gray: Metall Mater Trans B, 1996, vol. 27, pp. 633-646.

    Google Scholar 

  21. R. Deegan, P. Brunet and J. Eggers: Nonlinearity, 2008, vol. 21, pp. c1-c11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Sabah.

Additional information

Manuscript submitted March 11, 2014.

Appendices

Appendix A

Blowing Number Sample Calculation

Flow rate, Q (L/min) = 80;

Lance height, L (m) = 0.170;

Density of air at 273 K (0 °C) and 101325 Pa, ρ g (kg/m3) = 1.29;

Nozzle diameter, d (m) = 0.003;

Density of water at 273 K (0 °C) and 101325 Pa, ρ l (kg/m3) = 999.84;

Radius of the nozzle, r (m) = (d/2) = (0.003/2) = 0.0015;

Velocity at nozzle exit, \( U_{0} = \frac{Q}{{\frac{\pi }{4} d^{2} }} = \frac{{\frac{80}{1000 \times 60}}}{{\frac{\pi }{4} \times (.003)^{2} }} = 188.63 \) m/s

Impact velocity at bath surface[12]

$$ U_{j} = U_{0} \frac{0.97}{{\frac{aL}{r} + 0.29}} $$
$$ {\text{or}}, U_{\text{j}} = 188.63 \times \frac{0.97}{{\frac{0.07 \times 0.170}{0.0015} + 0.29}} = 22.25\;{\text{m/s}} $$

(Subagyo et al.[18] used the value of a = 0.07 for cold model experiments, 0.0382 for hot model data with no gas–metal reaction and 0.0393 for plant data with gas–metal reaction)

Critical gas velocity, \( U_{g} = \eta U_{j} = 0.44721 \times 22.25 = 9.95 \) (\( \eta = {\text{constant}} = 0.44721 \))

Blowing Number, N B

$$ N_{\text{B}} = \frac{{\rho_{g} U_{g}^{2} }}{{2\sqrt {\sigma \rho_{l} g} }} = \frac{{1.29 \times (9.95)^{2} }}{{2 \times \sqrt {0.07 \times 9.81 \times 999.84} }} = 2.44 $$

Droplet Generation Rate Sample Calculation

At lance height, L = 0.170 m, flow rate 80 L/min

Droplet generation rate calculation for cylinder 3,

Amount of droplet collected (M5 to M7), W sp = 0.056 × 10−3 kg

Sampling time, t s = 10 seconds

No of sample pots, N sp = 3

Volume of the sample pots, V sp = π × (0.0065) ^2 × 0.014 = 0.000001858 m3

Volume of the third cylinder, V b = π × (0.09^2 − 0.06^2) × 0.303 = 0.00428436 m3

$$ {\text{Droplet generation rate}}, R_{\text{B}} = \frac{{(\mathop \sum \nolimits Wsp )V_{\text{b}} }}{{t_{\text{s}} V_{\text{sp}} N_{\text{sp}} }} = \frac{{0.056 \times 10^{ - 3} \times 0.00428436}}{10 \times 0.000001858 \times 3} = 4.30 \times 10^{ - 3} {\text{kg/s}} $$

Appendix B

Error in Measurement of Weight of Droplets

At a particular operating condition and sampling place, droplets were collected twice and an average was taken. In estimation of the error, the variation of the weight of droplets collected with the number of experiments was analyzed.

For flow rate 80 L/min, lance height 0.160 m

Standard deviation of droplets weight (for 20 experiments), S ≈ σ = 0.083 × 10−3 kg

Confidence level 95 pct (level of significance, α = .05)

z = 1.96 (at 1 − α/2 = 1 − 0.05/2 = 0.9750)

Margin of error, \( {\text{ME}} = \sqrt {\frac{{z^{2} \sigma^{2} }}{n}} = \sqrt {\frac{{1.96^{2} \times 0.000083^{2} }}{20}} = 0.04 \times 10^{ - 3 } {\text{kg}} \)

It means that we are 95 pct confident that error in estimating the mean of droplet weight is no more than ±0.04 × 10−3 kg.

Error Due to Sampling Time Variation

Sampling time has varied from 3 to 150 seconds in different operating conditions. In this error estimation, it has been investigated how weight of droplets was affected by the sampling time variation.

For sample pot 2, L = 0.160 m, flow rate 80 L/min

Weight of droplets (sampling time 10 seconds) = 0.3332 × 10−3 kg

Weight of droplets (sampling time 5 seconds) = 0.18248 × 10−3 kg

Weight of droplets for \( 10{\text{ s }} = \, \left( {0. 1 8 2 4 8 { } \times { 1}0^{ - 3} / 5} \right) \, \times 10 \, = \, 0. 3 6 4 9 6 { } \times { 1}0^{ - 3 } {\text{kg}} \)

Error for sample time variation (between sampling time 5 and 10 seconds) \( = \, \left[ {\left( {0. 3 6 4 9 6- 0. 3 3 3 2} \right)/0. 3 3 3 2} \right] \times { 1}00 {\text{pct }} = { 9}. 5 3 {\text{pct}} \)

Weight of droplets (sampling time 20 seconds) = 0.73966 × 10−3 kg

Weight of droplets for \( 10{\text{ s }} = \, \left( {0. 7 3 9 6 6/ 20} \right) \, \times { 1}0 \, = \, 0. 3 6 9 8 3 { } \times { 1}0^{ - 3 } {\text{kg}} \)

Error for sample time variation (between sampling time 20 and 10 seconds)

$$ = \left[ {\left( {0. 3 6 9 8 3- 0. 3 3 3 2} \right)/0. 3 3 3 2} \right] \, \times { 1}00 {\text{pct }} = { 1}0. 9 9 {\text{pct}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabah, S., Brooks, G. Splash Distribution in Oxygen Steelmaking. Metall Mater Trans B 46, 863–872 (2015). https://doi.org/10.1007/s11663-014-0238-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0238-1

Keywords

Navigation