Skip to main content
Log in

Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Tonžetć, and A. Dippenaar: Miner. Eng., 2011, vol. 24, pp. 1258-1263.

    Article  Google Scholar 

  2. M. Sasaki and Y. Hida: Tetsu-To-Hagane, 1982, vol. 68, pp. 563-71.

    Google Scholar 

  3. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1344-1357.

    Article  Google Scholar 

  4. W.G. Mumme, J.M.F. Clout, and R.W. Gable: Neues Jahrb. Miner. Abh., 1998, vol. 173, pp. 93-117.

    Google Scholar 

  5. J. Hancart, V. Leroy, and A. Bragard: C.N.R.M. Report, 1967, DS 24/67, pp. 3–7.

  6. S.N. Ashan, T. Mukkerjee, and J.A. Whiteman: Ironmak. Steelmak., 2003, vol. 10, pp. 54-64.

    Google Scholar 

  7. J. Ostwald: BHP Tech. Bull., 1981, vol. 25, pp. 13–20.

    Google Scholar 

  8. J. McAndrew and J.M.F. Clout: Proc. 4th China-Australia Symp. Technol. Feed Prep. Ironmak. Dampier, Australia, 1993, pp. 1–15.

  9. T.R.C. Patrick and M.I. Pownceby: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1-11.

    Google Scholar 

  10. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, and A. Christensen: Metall. Mater. Trans. B, 2004, vol. 35, pp. 929-36.

    Article  Google Scholar 

  11. N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, and A. Christensen: J. Appl. Cryst., 2004, vol. 37, pp. 362-68.

    Article  Google Scholar 

  12. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: ISIJ Int., 2013, vol. 53, pp. 774-781.

    Article  Google Scholar 

  13. N.A.S. Webster, M.I. Pownceby, and I.C. Madsen: ISIJ Int., 2013, vol. 53, pp. 1334-1340.

    Article  Google Scholar 

  14. J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague, Neues Jahrb. Miner. Abh., 1989, vol. 161, pp. 1-26.

    Google Scholar 

  15. F. Matsuno: T. Iron Steel I. Japan, 1979, vol. 19, pp. 595-604.

    Google Scholar 

  16. F. Matsuno and T. Harada: T. Iron Steel I. Japan, 1981, vol. 21, pp. 318-25.

    Article  Google Scholar 

  17. M.I. Pownceby and J.M.F. Clout: T. I. Min. Metall. C, 2000, vol. 109, pp. 36-48.

    Google Scholar 

  18. E. Mazanek and S. Jasieńska: J. Iron Steel I., 1968, vol. 206, pp. 1104-1109.

    Google Scholar 

  19. T. Ya Malysheva, Yu. S. Yusfin, N.R. Mansurova, M.F. Gibadulin, and V.P. Lekin: Steel Transl., 2007, vol. 37, pp. 126–130.

  20. F. Zhang, S-.L. An, G-.P. Luo, and Y-.C. Wang: J. Iron Steel Res. Int., 2012, vol. 19, pp. 1-5.

    Google Scholar 

  21. K. Wallwork, B. Kennedy, and D. Wang: AIP Conference Proceedings, 2007, vol. 879, 879-82.

    Article  Google Scholar 

  22. L-H. Hsieh and J.A. Whiteman: ISIJ Int., 1989, vol. 29, pp. 24-32.

    Article  Google Scholar 

  23. Bruker, TOPAS Version 4.2, Bruker AXS Inc., Madison, WI, 2009.

  24. R. Blake, R. Hessevick, T. Zoltai, and L. Finger: Am. Mineral., 1966, vol. 51, pp. 123-29.

    Google Scholar 

  25. E.N. Maslen, V.A. Streltsov, N.R. Streltsova, and N. Ishizawa: Acta Cryst. B, 1995, vol. 51, pp. 929–939.

    Article  Google Scholar 

  26. H. Saalfeld and M. Wedde: Z. Krystallogr. Krist., 1974, vol. 139, pp. 129-135.

    Article  Google Scholar 

  27. G.A. Lager, J.D. Jorgensen, and F.J. Rotella: J. Appl. Phys., 1982, vol. 53, pp. 6751-6756.

    Article  Google Scholar 

  28. H. Schulz and V. Tscherry: Acta Cryst. B-Stru., 1972, vol. 28, pp. 2168-2173.

    Article  Google Scholar 

  29. I.Z. Oftedal: Z. Phys. Chem., 1927, vol. 128, pp. 135-158.

    Google Scholar 

  30. P. Berastegui, S.-G. Eriksson, and S. Hull, Mater. Res. Bull., 1999, vol. 34, pp. 303-314.

    Article  Google Scholar 

  31. D.F. Decker, J.S. Kasper, Acta Cryst., 1957, vol. 10, pp. 332-337.

    Article  Google Scholar 

  32. S.J. Louisnathan: Can. Mineral., 1971, vol. 10, pp. 822-837.

    Google Scholar 

  33. W.C. Hamilton: Phys. Rev., 1958, vol. 110, pp. 1050-1057.

    Article  Google Scholar 

  34. A.J. Studer, M.E. Hagen, and T.J. Noakes: Physica B, 2006, vol. 385-386, pp. 1013-1015.

    Article  Google Scholar 

  35. K. Kihara, Eur. J. Mineral., 1990, vol. 2, pp. 63-77.

    Article  Google Scholar 

Download references

Acknowledgements

The Australian Nuclear Science and Technology Organisation (ANSTO) is acknowledged for financial support of this research. This research was partially undertaken on the powder diffraction beamline (10BM1) at the Australian Synchrotron, Victoria, Australia, under beamtime awards AS113/PD4160 and AS132/PD6321. The Australian Institute of Nuclear Science and Engineering (AINSE) is acknowledged for travel and accommodation support under award P2275 for beamtime on the WOMBAT neutron powder diffractometer. The authors wish to thank: Barry Halstead, Jean-Pierre Veder and Bree Morgan (CSIRO Mineral Resources Flagship) for assistance with synchrotron data collection; Scott Olsen, Stewart Pullen and Georgia Clarke (Bragg Institute, ANSTO) for their assistance with sample environment for the neutron diffraction experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. S. Webster.

Additional information

Manuscript submitted November 24, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, N.A.S., Pownceby, M.I., Madsen, I.C. et al. Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of CaO:SiO2 Ratio. Metall Mater Trans B 45, 2097–2105 (2014). https://doi.org/10.1007/s11663-014-0137-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0137-5

Keywords

Navigation