Skip to main content
Log in

Transient Asymmetric Flow and Bubble Transport Inside a Slab Continuous-Casting Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A one third scale water model experiment was conducted to observe the asymmetric flow and vortexing flow inside a slab continuous-casting mold. Dye-injection experiment was used to show the evolution of the transient flow pattern in the liquid pool without and with gas injection. The spread of the dye was not symmetric about the central plane. The flow pattern inside the mold was not stationary. The black sesames were injected into water to visualize the vortexing flow pattern on the top surface. The changes of shape and location of single vortex and two vortices with time had been observed during experiments. Plant ultrasonic testing (UT) of slabs was used to analyze the slab defects distribution, which indicated that the defects are intermittent and asymmetric. A mathematical model has been developed to analyze the time-dependent flow using the realistic geometries, which includes the submerged entry nozzle (SEN), actual mold, and part of the secondary cooling zone. The transient turbulent flow of molten steel inside the mold has been simulated using the large eddy simulation computational approach. Simulation results agree acceptably well with the water model experimentally observed and plant UT results. The oscillating motions of jet and the turbulence naturally promote the asymmetric flow even without the effects of slide gate nozzle or the existence of clogs inside the SEN. The periodic behavior of transient fluid flow in the mold is identified and characterized. The vortexing flow is resulted from asymmetric flow in the liquid pool. The vortices are located at the low-velocity side adjacent to the SEN, and the positions and sizes are different. Finally, the model is applied to investigate the influence of bubble size and casting speed on the time-dependent bubble distribution and removal fraction from the top surface inside the mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

C a :

Added mass force coefficient, dimensionless

C d :

Drag coefficient, dimensionless

C S :

Smagorinsky constant, dimensionless

d :

Distance to the closest wall (m)

d b :

Diameter of bubble (m)

f :

Filtered variable

F a :

Added mass force (N)

F b :

Buoyancy force acting on bubble (N)

F d :

Viscous drag force (N)

F g :

Gravitational force of bubble (N)

F P :

Pressure gradient force (N)

g :

Acceleration due to gravity (m/s2)

G :

Filter function

k :

Von Kármán constant, dimensionless

L S :

Mixing length (m)

N :

Number of vectors

P :

Static pressure (Pa)

Re :

Reynolds numbers, dimensionless

C :

Characteristic filtered rate of strain (1/s)

S ij :

Rate-of-strain tensor for the resolved scale

t :

Time (s)

u b :

Instantaneous velocity of bubble (m/s)

u f :

Instantaneous velocity of fluid (m/s)

u i :

Velocity component (m/s)

V :

Volume (m3)

V′:

Average flow velocity in direction y

W′:

Average flow velocity in direction z

x i :

Coordinate direction (x, y, or z)

α :

Angle of the jet core (deg)

ρ :

Density (kg/m3)

ρ b :

Density of bubble (kg/m3)

ρ f :

Density of fluid (kg/m3)

ν :

Kinematic viscosity of fluid (m2/s)

μ t :

Turbulent viscosity (m2/s)

Δ:

Mesh spacing

∇:

Gradient operator

τ ij :

Sub-grid scale stress (kg·m−1·s−2)

i,j :

Direction (x, y, z)

References

  1. B.G. Thomas, X. Huang, and R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527-46.

    Article  Google Scholar 

  2. R. Sánchez-Pérez, R.D. Morales, M. Díaz-Cruz, and M. Olivares-Xometl: ISIJ Int., 2003, vol. 43, pp. 637–46.

  3. K.H. Tacke: J. Iron. Steel Res. Int., 2011, vol.18, pp. 211-19.

    Google Scholar 

  4. G. Abbel, W. Damen, G. de Dendt, and W. Tiekink: ISIJ Int., 1996, vol. 36, pp. 219-22.

    Article  Google Scholar 

  5. H. Emling, T.A. Waugaman, S.L. Feldbauer, and A.W Cramb: Steelmaking Conference Proceedings, vol. 77, ISS, Warrendale, PA, 1994, pp. 371–79.

  6. B.G. Thomas, A. Denissov, and H. Bai: Steelmaking Conference Proceedings, vol. 80, ISS, Warrendale, PA, 1994, pp. 381–88.

  7. Y. Miki, and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548-55.

    Article  Google Scholar 

  8. M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, and Z. Morita: ISIJ Int., 35(1995), 1354.

    Article  Google Scholar 

  9. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1143-59.

    Article  Google Scholar 

  10. A. Ramos-Banderas, R.D. Morales, R. Sánchez-Pérez, L. García-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643–65.

  11. G.G. Lee, B.G. Thomas, and S.H. Kim: Met. Mater. Int., 2010, vol. 16B, pp. 501-06.

    Article  Google Scholar 

  12. P. Naveau, H.H. Visser, J.M. Galpin, and G. Sussek: 5th European Continuous Casting Conference, Nice, France, 2005.

  13. T. Miyake, M. Morishita, H. Nakata, and M. Kokita: ISIJ Int., 2006, vol. 46, pp. 1817-22.

    Article  Google Scholar 

  14. L. Wang, H.G. Lee, and P. Hayes: ISIJ Int., 1996, vol. 36, pp. 17-24.

    Article  Google Scholar 

  15. L. Zhang, S. Taniguchi, and K. Matsumoto: Ironmaking Steelmaking, 2002, vol. 29, pp. 326-36.

    Article  Google Scholar 

  16. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361-79.

    Article  Google Scholar 

  17. Q. Yuan, B.G. Thomas and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703-14.

    Article  Google Scholar 

  18. Q. Yuan: Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2004.

  19. M. Javurek, P. Gittler, R. Rossler, B. Kaufmann and H. Preblinger: Steel Res. Int., 2005, vol.76, pp. 64-70.

    Google Scholar 

  20. C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig and A.Kharicha: Steel Res. Int., 2006, vol.77, p. 1.

    Google Scholar 

  21. Y. Miki, H. Ohno, Y. Kishimoto, K. Furumai and S. Tanaka: Journal of Iron and Steel Research International, 2012, vol. 19, pp. 853-57.

    Google Scholar 

  22. L. Zhang and Y. Wang: TMS Annual Meeting & Exhibition, TMS, Orlando, FL, 2012.

  23. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: Steelmaking Conference Proceedings, ISS, Warrendale, PA, 1994, vol. 77, pp. 381–88.

  24. J. Herbertson, Q.L. He, P.J. Flint, and R.B. Mahapatra: Steelmaking Conference Proceedings, ISS, Warrendale, PA, 1991, vol. 74, pp. 171–85.

  25. X. Huang and B.G. Yhomas: Can. Metall. Q., 1998, vol.37, p. 197.

    Article  Google Scholar 

  26. Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702.

    Article  Google Scholar 

  27. Y. Wang and L.F. Zhang: ISIJ Int., 2010, vol. 50, pp. 1777-82.

    Article  Google Scholar 

  28. R. Chaudhary, C. Ji, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 987-1007.

    Article  Google Scholar 

  29. B.K. Li, Z.Q. Liu, F.S. Qi, F. Wang and G.D. Xu: Acta Metall. Sin., 2012, vol.48, pp. 23-32.

    Google Scholar 

  30. T. Robertson, P. Moore, and R.J. Hawkins: Ironmaking Steelmaking, 1986, vol. 13(4), pp. 195-203.

    Google Scholar 

  31. D. Gupta, S. Subramanian, and A.K. Lahiri: Steel Res., 1991, vol. 62(11), pp. 496-500.

    Google Scholar 

  32. D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757–64.

  33. J.P. Birat, M. Larrecq, J.Y. Lamant, and J. Petegnief: Mold Operation for Quality and Productivity, Iron and Steel Society, Warrendale, PA, 1991, pp. 3-14.

    Google Scholar 

  34. E. Torres-Alonso, R.D. Morales, L.G. Demedices, A. Nájera, J. Palafox-Ramos, and P. Ramírez-López: ISIJ Int., 2007, vol. 47, pp. 679–88.

  35. E. Torres-Alonso, J. Palafox-Ramos, P. Ramírez-López, and R.D. Morales: Steel Res. Int., 2008, vol. 79, pp. 553–63.

  36. B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400.

    Article  Google Scholar 

  37. R. Chaudhary, G.G. Lee, B.G. Thomas, and S.H. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870–84.

    Article  Google Scholar 

  38. A. Ramos-Banderas, R. Sánchez-Pérez, R.D. Morales, J. Palafox-Ramos, L. Demedices-Garcia, and M. Diaz-Cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.

  39. Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.

    Article  Google Scholar 

  40. C. Real, R. Miranda, C. Vilchis, M. Barron, L. Hoyos, and J. Gonzalez: ISIJ Int., 2006, vol. 46, pp. 1183-91.

    Article  Google Scholar 

  41. Z.Q. Liu, B.K. Li, M.F. Jiang and F. Tsukihashi. ISIJ Int., 2013, Vol. 53 (3), pp. 484–92.

    Article  Google Scholar 

  42. Y.H. Wang: Steelmaking Conference Proceedings, vol. 73, ISS, Warrendale, PA, 1991, pp. 473-80.

    Google Scholar 

  43. Q.L. He: ISIJ Int., 1993, Vol. 33 (2), pp. 343-45.

    Article  Google Scholar 

  44. B.K. Li and F. Tsukihashi: ISIJ Int., 2005, vol.45 (1), pp. 30-36.

    Article  Google Scholar 

  45. R. Chaudhary, G.G. Lee, B.G. Thomas, S.M. Cho, S.H. Kim, and O.D. Kwon: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 300–15.

    Article  Google Scholar 

  46. B.K. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1053-66.

    Article  Google Scholar 

  47. B.K. Li and F. Tsukihashi: ISIJ Int., 2003, vol.43 (6), pp.923-31.

    Article  Google Scholar 

  48. E. Torres-Alonso, R.D. Morales, S. Garcia-Hernández, and J. Palafox-Ramos: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 583-97.

    Article  Google Scholar 

  49. E. Torres-Alonso, R.D. Morales, and S. Garcia-Hernández: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 675-90.

    Article  Google Scholar 

  50. H. Yin, H.T. Tsai, and B. Forman: 6th European Conference on Continuous Casting, 2008, Riccione, Italy.

  51. Y. Wang and L. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319-50.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to express their thanks to the National Natural Science Foundation of China. (Grant No. 50934008) for supporting the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Additional information

Manuscript submitted May 23, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Li, B. & Jiang, M. Transient Asymmetric Flow and Bubble Transport Inside a Slab Continuous-Casting Mold. Metall Mater Trans B 45, 675–697 (2014). https://doi.org/10.1007/s11663-013-9972-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9972-z

Keywords

Navigation