Skip to main content
Log in

Effects of Annealing on Microstructure and Microstrength of Metallurgical Coke

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Two metallurgical cokes were heat treated at 1673 K to 2273 K (1400 °C to 2000 °C) in a nitrogen atmosphere. The effect of heat treatment on the microstructure and microstrength of metallurgical cokes was characterized using X-ray diffraction, Raman spectroscopy, and ultra-microindentation. In the process of heat treatment, the microstructure of the metallurgical cokes transformed toward the graphite structure. Raman spectroscopy of reactive maceral-derived component (RMDC) and inert maceral-derived component (IMDC) indicated that the graphitisation degree of the RMDC was slightly lower than that of the IMDC in the original cokes; however graphitisation of the RMDC progressed faster than that of the IMDC during annealing, and became significantly higher after annealing at 2273 K (2000 °C). The microstrength of cokes was significantly degraded in the process of heat treatment. The microstrength of the RMDC was lower, and of its deterioration caused by heat treatment was more severe than IMDC. The degradation of the microstrength of cokes was attributed to their increased graphitisation degree during the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Patrick and A. Walker: Carbon, 1989, vol. 27, no. 1, pp. 117-123.

    Article  Google Scholar 

  2. M.G.K. Grant, A.C.D. Chaklader, and J.T. Price: Fuel, 1991, vol. 70, no. 2, pp. 181-188.

    Article  Google Scholar 

  3. H. Sato, J.W. Patrick, and A. Walker: Fuel, 1998, vol. 77, no. 11, pp. 1203-1208.

    Article  Google Scholar 

  4. Y. Kubota, S. Nomura, T. Arima, and K. Kato: ISIJ International, 2011, vol. 51, no. 11, pp. 1800-1808.

    Article  Google Scholar 

  5. N. Andriopoulos, C.E. Loo, R. Dukino, and S.J. McGuire: ISIJ International, 2003, vol. 43, no. 10, pp. 1528-1537.

    Article  Google Scholar 

  6. X. Xing, G. Zhang, M. Dell’Amico, G. Ciezki, Q. Meng, and O. Ostrovski: Metall. Mater. Trans. B, 2013, vol. 44, no. 4, pp. 870–77.

    Article  Google Scholar 

  7. S. Dong, N. Paterson, S.G. Kazarian, D.R. Dugwell, and R. Kandiyoti: Energy & Fuels, 2007, vol. 21, no. 6, pp. 3446-3454.

    Article  Google Scholar 

  8. T.W. Zerda, A. John, and K. Chmura: Fuel, 1981, vol. 60, no. 5, pp. 375-378.

    Article  Google Scholar 

  9. M. Kawakami, T. Karato, and T. Takenaka: ISIJ International, 2005, vol. 45, no. 7, pp. 1027-1034.

    Article  Google Scholar 

  10. M. Kawakami, H. Kanba, K. Sato, T. Takenaka, S. Gupta, R. Chandratilleke, and V. Sahajwalla: ISIJ International, 2006, vol. 46, no. 8, pp. 1165–1170.

    Article  Google Scholar 

  11. A. Guedes, B. Valentim, A.C. Prieto, S. Rodrigues, and F. Noronha: Int. J. Coal Geol., vol. 83, no. 4, pp. 415–422.

    Article  Google Scholar 

  12. T. Gruber, T.W. Zerda, and M. Gerspacher: Carbon, 1994, vol. 32, no. 7, pp. 1377-1382.

    Article  Google Scholar 

  13. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martinezalonso, and J.M.D. Tascon: Carbon, 1994, vol. 32, no. 8, pp. 1523-1532.

    Article  Google Scholar 

  14. F. Tuinstra and J.L. Koenig: Journal of Chemical Physics, 1970, vol. 53, no. 3, pp. 1126-1130.

    Article  Google Scholar 

  15. L. Lu, V. Sahajwalla, and D. Harris: Energy & Fuels, 2000, vol. 14, no. 4, pp. 869-876.

    Article  Google Scholar 

  16. M.A. Short and P.L. Walker: Carbon, 1963, vol. 1, no. 1, pp. 3-9.

    Article  Google Scholar 

  17. L. Lu, V. Sahajwalla, C. Kong, and D. Harris: Carbon, 2001, vol. 39, no. 12, pp. 1821-1833.

    Article  Google Scholar 

  18. S. Gupta, V. Sahajwalla, J. Burgo, P. Chaubal, and T. Youmans: Metall. Mater. Trans. B, 2005, vol. 36, no. 3, pp. 385–394.

    Article  Google Scholar 

  19. J.V. Dubrawski and W.W. Gill: Ironmaking and Steelmaking, 1984, vol. 11, no. 1, pp. 7-16.

    Google Scholar 

  20. D.T. Marx and L. Riester: Carbon, 1999, vol. 37, no. 11, pp. 1679-1684.

    Article  Google Scholar 

  21. O. Tomoki, U. Kenta, M. Yoshio, A. Hideyuki, M. Takatoshi, U. Takatoshi, and F. Koichi: Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan, 2006, vol. 92, no. 3, pp. 171-176.

    Google Scholar 

  22. J.S. Fielda and M.V. Swain: Carbon, 1996, vol. 34, no. 11, pp. 1357-1366.

    Article  Google Scholar 

  23. Y. Yamazaki, K. Hiraki, T. Kanai, X. Zhang, Y. Matsushita, M. Shoji, H. Aoki, and T. Miura: Journal of Thermal Science and Technology, 2011, vol. 6, no. pp. 278-288.

    Article  Google Scholar 

  24. T.F. Yen, J.G. Erdman, and S.S. Pollack: Analytical Chemistry, 1961, vol. 33, no. pp. 1587-1594.

    Article  Google Scholar 

  25. C. Suryanarayana and M.G. Norton, X-Ray Diffraction: A Practical Approach, 1998, Plenum Press: New York, NY, p. 50.

    Book  Google Scholar 

  26. R. Kostecki, T. Tran, X. Song, K. Kinoshita, and F. McLarnon: Journal of The Electrochemical Society, 1997, vol. 144, no. 9, pp. 3111-3117.

    Article  Google Scholar 

  27. A.C. Ferrari and J. Robertson: Physical Review B, 2000, vol. 61, no. 20, pp. 14095-14107.

    Article  Google Scholar 

  28. C. Sheng: Fuel, 2007, vol. 86, no. 15, pp. 2316-2324.

    Article  Google Scholar 

  29. X. Li, J. Hayashi, and C. Li: Fuel, 2006, vol. 85, no. 12–13, pp. 1700-1707.

    Article  Google Scholar 

  30. J. Van Doorn, M.A. Vuurman, P.J.J. Tromp, D.J. Stufkens, and J.A. Moulijn: Fuel Processing Technology, 1990, vol. 24, no. 0, pp. 407-413.

    Article  Google Scholar 

  31. R.J. Nemanich and S.A. Solin: Physical Review B, 1979, vol. 20, no. 2, pp. 392-401.

    Article  Google Scholar 

  32. A.C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W.I. Milne, V. Stolojan, L.M. Brown, A. LiBassi, and B.K. Tanner: Journal of Non-Crystalline Solids, 2000, vol. 266, no. pp. 765-768.

    Article  Google Scholar 

  33. A.C. Ferrari and J. Robertson: Physical Review B, 2001, vol. 64, no. 7, pp. 1-13.

    Article  Google Scholar 

  34. W.C. Oliver and G.M. Pharr: Journal of Materials Research, 1992, vol. 7, no. 6, pp. 1564-1583.

    Article  Google Scholar 

  35. A.C. Fischer-Cripps, The IBIS Handbook of Nanoindentation. 2005: Fischer-Cripps Laboratories Pty Ltd., Forestville, NSW

    Google Scholar 

  36. R.E. Franklin: Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1951, vol. 209, no. 1097, pp. 196-218.

    Google Scholar 

Download references

Acknowledgments

This project was supported by BlueScope Steel, BHP Billiton, and Australian Research Council (ARC Linkage Project LP130100701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xing.

Additional information

Manuscript submitted September 23, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, X., Zhang, G., Rogers, H. et al. Effects of Annealing on Microstructure and Microstrength of Metallurgical Coke. Metall Mater Trans B 45, 106–112 (2014). https://doi.org/10.1007/s11663-013-0002-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-0002-y

Keywords

Navigation