Skip to main content
Log in

Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length (l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work \( \left( {\frac{{l_{\text{P}} }}{{d_{o} }} = 10.7\left( {N^{\prime }_{Fr} } \right)^{0.46} \left( {\rho_{\text{g}} /\rho_{l} } \right)^{0.35} } \right) \) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which contributes to zinc oxide reduction near the free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A c :

preexponential factor

A v :

preexponential factor

C μ :

turbulent viscosity coefficient

C Sato :

Sato’s viscosity coefficient

C TD :

bubble dispersion coefficient

D :

width of the furnace

D k,m :

diffusion coefficient

D b :

bubble diameter

d :

distance along Y axis

E c :

activation energy constant

E v :

activation energy constant

H :

height of the furnace

h :

distance along Z axis

k :

turbulent kinetic energy

K c :

char oxidation per unit area of the particle surface

K d :

diffusion rate coefficient of oxygen

K v :

rate constant

K gas :

total number of chemical species

l p :

jet penetration length

L :

length of the furnace

l :

distance along X axis

P :

local pressure

P A :

atmospheric pressure

R:

universal gas constant

R p :

radius of the coal particle

S k :

species source term

Sct :

turbulent Schmidt number

T p :

temperature of the coal particle

T g :

gas temperature

V :

released volatiles

v k :

phase k velocity

U :

velocity

V f :

ultimate volatile content

X :

radial coordinate

Y :

tangential coordinate

y k :

mass fraction chemical species

Z :

axial coordinate

α k :

volume fraction of phase k

\( \rho_{k} \) :

density for phase k

ρ g :

gas phase density

τ R :

turbulent time scale

ε:

dissipation rate

Φ :

flow variable

ϕ k :

scalar value of phase k

Γ:

diffusion coefficient

μ t :

turbulent viscosity

References

  1. G.G. Richards, J.K. Brimacombe, and G.W. Toop: Metall. Trans. B, 1985, vol. 16B, pp. 513–27.

    Article  CAS  Google Scholar 

  2. J. Hoang, M.A. Reuter, R. Matusewicz, and S. Hughes: Miner. Eng., 2009, vol. 22, pp. 742–51.

    Article  CAS  Google Scholar 

  3. G.G. Richards and J.K. Brimacombe: Metall. Trans. B, 1985, vol. 16B, pp. 541–49.

    Article  CAS  Google Scholar 

  4. G.G. Richards and J.K. Brimacombe: Metall. Trans. B, 1985, vol. 16B, no. 3, pp. 529–40.

    Article  CAS  Google Scholar 

  5. T.A.A. Quarm: U.S. Patent, Bechtel International Corporation, 1975, p. 9.

  6. R.C. Bell, G.H. Turner, and E. Peters: TMS. AIME, 1955, vol. 203, pp. 472–77.

    Google Scholar 

  7. H.H. Kellogg: Trans. TMS-AIME, 1967, vol. 239, pp. 1439–49.

    CAS  Google Scholar 

  8. H.H. Kellogg: E/MJ, 1957, vol. 158, no. 3, pp. 90–92.

    Google Scholar 

  9. T.A.A. Quarm: E/MJ, 1968, vol. 169, no. 1, pp. 92–93.

    Google Scholar 

  10. T.A.A. Quarm: Min. Mag., 1988, pp. 120–22.

  11. G.G. Richards: EPD Congress, TMS, Warrendale, PA, 1994.

  12. G.G. Richards: The Howard Worner Int. Symp. on Inj. Pyro., TMS, Melbourne, Australia, 1996.

  13. G.G. Richards: Dept. of Metallurgical Engineering, University of British Columbia, Vancouver, Canada, 1979, p. 335.

  14. R. Suzuki, S. Goto, and K. Azuma: J. Fac. Eng., Univ. Tokyo (B), 1970, vol. 30, no. 3, pp. 247–87.

    CAS  Google Scholar 

  15. S.L. Cockcroft, G.G. Richards, and J.K. Brimacombe: Can. Metall. Q., 1988, vol. 27, no. 1, pp. 27–40.

    Article  CAS  Google Scholar 

  16. S.L. Cockcroft, G.G. Richards, and J.K. Brimacombe: Metall. Trans. B, 1989, vol. 20B, pp. 227–35.

    CAS  Google Scholar 

  17. G. Haralampiev and N. Popov: Can. Metall. Q., 1999, vol. 38, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  18. C.Y. Choi and Y.H. Lee: REWAS–Global Symposium on Recycling, Waste Treatment and Clean Technology, San Sebastian, Spain, 1999.

  19. D.J. Sofra and A. Heinz: EMC, Hannover, Germany, 2003.

  20. S. Hughes, R.W. Matusewicz, M.A. Reuter, and D. Sherrington: EMC, Dusseldorf, Germany, 2007.

    Google Scholar 

  21. J. Hoang, M.A. Reuter, R. Matusewicz, and S. Hughes: Zinc Proc. Conf., Brisbane, Australia, 2008.

  22. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: EMC 2005, GDMB Medienverlag, Dresden, Germany, 2005.

  23. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: John Floyd International Symposium on Sustainable Developments in Metals Processing, NCS Associates, Melbourne, Australia, 2005.

  24. K.Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: Sohn Int. Symp. Adv. Proc. of Met. Mater., TMS, Warrendale, PA, 2006.

    Google Scholar 

  25. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 13–20.

    Article  CAS  Google Scholar 

  26. D. Langberg, X. Liu, and A. Kyllo: Australian Coal Association Research Program (ACARP), Brisbane, Australia, May 2000, p. Project number: C5061.

  27. M.P. Davis, R.J. Dry, and M.P. Schwarz: 3 rd Int. Conf. on CFD in the Minerals and Process Industries, Melbourne, Australia, CSIRO Minerals, 2003.

  28. M.P. Schwarz: Zinc Processing 08, Brisbane, Australia, 2008.

  29. M.P. Schwarz: Appl. Math. Model., 1995, vol. 20, pp. 41–51.

    Article  Google Scholar 

  30. M.P. Schwarz and M.P. Davis: Rod Guthrie Honorary Symposium on Process Metallurgy, McGill Metals Processing Centre, Montreal, Canada, 2011.

  31. M.P. Schwarz and P.T.L. Koh: 4 th Int. Con. Inj. Met.: Scaninject IV, MEFOS, Lulea, Sweden, 1986.

  32. D. Stephens, M. Tabib, M.P. Davis, and M.P. Schwarz: 8 th Int. Conf. on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, 2011.

  33. J. Vaarno, J. Pitkälä, T. Ahokainen, and A. Jokilaakso: Appl. Math. Mod., 1998, vol. 22, no. 11, pp. 907–20.

    Article  Google Scholar 

  34. N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R. Matusewicz: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 39–55.

    Article  Google Scholar 

  35. B.E. Launder and D.B. Spalding: Com. Meth. App. Mech. Eng., 1974, vol. 3, no. 2, pp. 269–89.

    Article  Google Scholar 

  36. S.V. Patankar and D.B. Spalding: Int. J. Heat. Mass. Trans., 1972, vol. 15, pp. 1787–1806.

    Article  Google Scholar 

  37. S. Badzioch and P.G.W. Hawksley: Ind. Eng. Chem. Process Des. Dev., 1970, vol. 9, no. 4, pp. 521–30.

    Article  CAS  Google Scholar 

  38. D.B.H. Anthony, J.B. Hottel, and H.C. Meissner: 15 th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, PA, 1975, p. 1303.

  39. B.F. Magnussen and B.H. Hjertager: Proc. of the 16 th Symp. (Int.) on Combustion, The Combustion Institute, Cambridge, MA, 1976.

  40. D.B. Spalding: Symp. (Int.) Combust., 1971, vol. 13 (1), pp. 649–57.

  41. M.A. Field, D.W.G., B.B. Morgan, and P.G.W. Hawksley: Combustion of Pulverized Coal, Leatherhead, The British Coal Utilization Research Association, Gloucestershire, U.K., 1967, pp. 186–210.

  42. M.M. Baum and P.J. Street: Combust. Sci. Tech., 1971, vol. 3, no. 5, pp. 231–43.

    Article  CAS  Google Scholar 

  43. T.F.P. Wall, W.J. Bartz, and S. Doc: F388/a/3, International Flame Research Foundation, Livorno, Italy, 1976.

  44. M. Popovac and K. Hanjalic: Flow Turbulence Combust., 2007, vol. 78, pp. 177–202.

    Article  Google Scholar 

  45. B.A. Kader: Int. J. Heat. Mass. Trans., 1981, vol. 24, pp. 1541–44.

    Article  Google Scholar 

  46. AVL: AVL FIRE CFD Solver Manual v 2008, vol. 2008, AVL, Graz, Austria, 2008.

  47. AVL: AVL FIRE CFD Species Transport Manual v 2008, vol. 2008, AVL, Graz, Austria, 2008.

  48. D.C. Wilcox: Turbulence Modelling for CFD, 3rd ed., DCW Industries, Inc., La Canada Flintridge, CA, 1998.

  49. AVL: AVL FIRE CFD Multiphase Manual v 2008, AVL, Graz, Austria, 2008.

  50. J.A. Naser and A.D. Gosman: J. Auto. Eng., 1995, vol. 209, no. 4, p. 289–95.

    Article  Google Scholar 

  51. R. Hong, H. Li, H. Li, and Y. Wang: Powder Tech., 1997, vol. 92, pp. 205–12.

    Article  CAS  Google Scholar 

  52. F. Wang, Z. Yu, Q. Marashdeh, and L.-S. Fan: Chem. Eng. Sci., 2010, vol. 65, pp. 3394–3408.

    Article  CAS  Google Scholar 

  53. T. Li, K. Pougatch, M. Salcudean, and D. Grecov: Powder Tech., 2008, vol. 184, pp. 89–99.

    Article  CAS  Google Scholar 

  54. M.-y. Zhu, I. Sawada, and M. Iguchi: ISIJ Int., 1998, vol. 38, pp. 411–20.

  55. E.O. Hoefele and J.K. Brimacombe: Metall. Trans. B, 1979, vol. 10B, no. 4, pp. 631–48.

    Article  CAS  Google Scholar 

  56. G.N. Oryall and J.K. Brimacombe: Metall. Trans. B, 1976, vol. 7B, no. 3, pp. 391–403.

    Article  CAS  Google Scholar 

  57. V.J. Szekely and N.J. Themelis: Rate Phenomena in Process Metallurgy, Wiley-Interscience, New York, NY, 1971.

  58. T.A.A. Quarm: Trans. Inst. Mining and Metall., 1980, vol. 89, pp. 139–44.

    Google Scholar 

  59. T. Lehner and R. Lindgren: CIM Meeting, Vancouver, Canada, 1985, p. 99–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmul Huda.

Additional information

Manuscript submitted October 7, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huda, N., Naser, J., Brooks, G.A. et al. Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace. Metall Mater Trans B 43, 1054–1068 (2012). https://doi.org/10.1007/s11663-012-9686-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9686-7

Keywords

Navigation