Skip to main content
Log in

Mathematical modeling of microstructural development in hypoeutectic cast iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, which contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

nucleation coefficient (m−3 K−2)

pct C, Si, and P:

concentration carbon, silicon, and phosphorus in liquid (wt pct)

C L :

liquid composition (wt pct)

C 0 :

initial liquid composition (wt pct)

C p :

specific heat (J kg−1 K−1)

f cond :

fraction of gap heat transfer via conduction

f lim :

fraction limit of gap heat transfer via conduction

f s :

volume fraction transformed

f s :

rate of solidification (s−1)

h conv :

film coefficient for free convection (W m−2 K−1)

h eff :

effective heat-transfer coefficient (W m−2 K−1)

h cond :

conductive component of h eff (W m−2 K−1)

h rad :

radiative component of h eff (W m−2 K−1)

k :

segregation coefficient, or conductivity (W m−1 K−1)

L :

volumetric latent heat (J m−3)

N :

number of grains per unit volume (m−3)

Q :

volumetric heat-source term (W m−3)

q″:

heat flux (W m−2)

R :

grain radius (m)

T :

temperature (°C)

T L :

liquidus temperature (°C)

T eut :

graphite eutectic temperature (°C)

T carb :

iron carbide eutectic temperature (°C)

T cast :

temperature of the casting surface (°C)

T mold :

temperature of the mold surface (°C)

T surf and T :

surface and ambient temperature (°C)

ΔT :

liquid undercooling (K)

t :

time (S)

t cast :

casting time (S)

V :

growth velocity (m s−1)

ε eff :

effective radiation emissivity

ε cast and ε mold :

emissivity of cast and mold

ø e :

total extended volume fraction

ø e,j :

extended volume fraction of phase j

μ :

growth coefficient

ρ :

density (Kg m−3)

σ :

Stefan-Boltzmann constant (5.6696(10)−8) (W m−2 K−4)

References

  1. D.M. Stefanescu and C.S. Kanetkar: AFS Trans., 1987, vol. 95, pp. 139–44.

    CAS  Google Scholar 

  2. G. Upadhya, D.K. Banerjee, D.M. Stefanescu, and J.L. Hill: AFS Trans., 1990, vol. 98, pp. 699–706.

    CAS  Google Scholar 

  3. E. Fras and H.F. Lopez: Acta Metall., 1993, vol. 41, pp. 3575–83.

    Article  CAS  Google Scholar 

  4. D.D. Goettsch and J.A. Dantzig: Metall. Mater: Trans. A, 1994, vol. 25A, pp. 1063–79.

    CAS  Google Scholar 

  5. L. Nastac and D.M. Stefanescu: AFS Trans., 1996, vol. 103, pp. 319–37.

    Google Scholar 

  6. C.R. Breeden: BCIRA J., 1982, vol. 30.

  7. R.W. Heine: AFS Trans. A, 1986, vol. 94, pp. 391–402.

    CAS  Google Scholar 

  8. D. Glover, C.E. Bates, and R. Monroe: AFS Trans., 1982, vol. 90, pp. 745–57.

    CAS  Google Scholar 

  9. R.W. Heine: AFS Trans., 1977, vol. 85, pp. 527–44.

    Google Scholar 

  10. M. Rappaz: Int. Mater. Rev., 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  11. D.M. Stefanescu: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 637–50.

    CAS  Google Scholar 

  12. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  CAS  Google Scholar 

  13. W. Oldfield: Trans. ASM, 1966, vol. 59, pp. 945–61.

    CAS  Google Scholar 

  14. P. Thevoz, J.L. Desbiolles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    CAS  Google Scholar 

  15. E. Fras, W. Kapturkiewicz, and H.F. Lopez: Int. J. Cast Met. Res., 1993, vol. 6, pp. 91–98.

    Google Scholar 

  16. P. Magnin and W. Kurz: Metall. Trans. A, 1988, vol. 19A, pp. 1955–63.

    CAS  Google Scholar 

  17. P. Magnin and W. Kurz: Metall. Trans. A, 1988, vol. 19A, pp. 1965–71.

    CAS  Google Scholar 

  18. J. Lipton, M.E. Glicksman, and W. Kurz: Metall. Trans. A, 1987, vol. 18A, pp. 341–45.

    CAS  Google Scholar 

  19. E. Scheil: Z. Metallkd., 1942, vol. 34, p. 70.

    Google Scholar 

  20. A. Kagawa and T. Okamoto: Met. Sci., 1980, pp. 519–24.

  21. T. Inoue and Z. Wang: in Calculation of Internal Stresses in Heat Treatment of Metallic Materials, Linkoping University, Linkoping, Sweden, 1984, vol. 2, pp. 298–310.

    Google Scholar 

  22. L. Nastac and D.M. Stefanescu: in Micro/Macro Scale Phenomena in Solidification, ASME, Fairfield, NJ, 1992, HTD-vol.218/AMD-vol.139, pp. 27–34.

    Google Scholar 

  23. M.F. Modest: Radiative Heat Transfer, McGraw-Hill Series on Mechanical Engineering, McGraw-Hill, Inc., New York, NY, 1993.

    Google Scholar 

  24. R.D. Pehlke, A. Jeyarajan, and H. Wada: Summary of Thermal Properties for Casting Alloys and Mold Materials NITS-PB83-211003, University of Michigan, Ann Arbor, MI, 1982.

    Google Scholar 

  25. J.F. Janowak and R.B. Gundlach: AFS Trans., 1982, vol. 90, pp. 847–63.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maijer, D., Cockcroft, S.L. & Patt, W. Mathematical modeling of microstructural development in hypoeutectic cast iron. Metall Mater Trans A 30, 2147–2158 (1999). https://doi.org/10.1007/s11661-999-0026-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0026-8

Keywords

Navigation