Skip to main content
Log in

Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The main goal of this investigation is to determine the influence of grain size on the mechanical properties and, specifically, the intrinsic ductility of nanocrystalline (nc) Fe. Ball-milled nc Fe was consolidated into compacts of near theoretical density by uniaxial warm pressing. Compaction parameters and annealing treatments resulted in a range of grain sizes for subsequent mechanical testing. The miniaturized disk bend test, hardness, and the automated ball indentation (ABI) method were used to test nanocrystal (nc) iron in compression and tension. The deformation and fracture morphologies of the tested samples were characterized by light and scanning electron microscopy. The hardness, as a function of the grain size, was described with a Hall-Petch slope, which was smaller than that in coarse-grained Fe. In tension, the material failed in a macroscopically brittle manner, while local ductility in very concentrated shear bands was observed. The compressive characteristics of the nc Fe were similar to those of a perfectly plastic material. The results are discussed in the context of the mechanical behavior of coarse-grained polycrystalline metals and alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.S. Darken: Trans. Am. Soc. Met., 1961, vol. 54, p. 600.

    Google Scholar 

  2. J.S. Koehler: Phys. Rev. B, 1970, vol. 2, pp. 547–51.

    Article  Google Scholar 

  3. R.W. Armstrong: in Yield, Flow and Fracture of Polycrystals, T.N. Baker, ed., Applied Science Publishers, Essex, England, 1983, pp. 1–31.

    Google Scholar 

  4. R.W. Siegel and G.E. Fougere: Nanostruct. Mater., 1995, vol. 6, pp. 205–16.

    Article  CAS  Google Scholar 

  5. H. Hahn and K.A. Padmanabhan: Nanostruct. Mater., 1995, vol. 6, pp. 191–200.

    Article  CAS  Google Scholar 

  6. M.J. Mayo: in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, M. Nastasi, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 361–80.

    Google Scholar 

  7. E.O. Hall: Proc. Phys. Soc., 1951, vol. 9, pp. 742–53.

    Google Scholar 

  8. N.J. Petch: J. Iron Steel Inst., 1953, vol. 173, pp. 25–28.

    Google Scholar 

  9. N.J. Petch: Phil. Mag., 1956, vol. 1, pp. 186–90.

    CAS  Google Scholar 

  10. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Phil. Mag., 1962, vol. 7, pp. 45–58.

    CAS  Google Scholar 

  11. G.E. Fougere, J.R. Weertman, and R.W. Siegel: Nanostruct. Mater., 1993, vol. 3, pp. 379–84.

    Article  CAS  Google Scholar 

  12. U. Erb, G. Palumbo, R. Zugic, and K.T. Aust: in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, pp. 93–110.

    Google Scholar 

  13. U. Köster, J. Meinhardt, and H. Alves: Mater. Sci. Forum, 1995, vols. 179–181, pp. 533–38.

    Article  Google Scholar 

  14. T.R. Malow, C.C. Koch, P.Q. Miraglia, and K.L. Murty: Mater. Sci. Eng. A, 1998, in press.

  15. T.R. Malow and C.C. Koch: North Carolina State University, Raleigh, NC, unpublished research, 1998.

  16. T.R. Malow and C.C. Koch: Acta Mater., 1997, vol. 45, pp. 2177–86.

    Article  CAS  Google Scholar 

  17. H.P. Klug and L. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974, p. 618.

    Google Scholar 

  18. A. Guinier: X-Ray Diffraction, W.H. Freeman and Co., San Francisco, CA, 1963, p. 121.

    Google Scholar 

  19. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  20. M.A. Myers and K.K. Chawla: Mechanical Metallurgy, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 52.

    Google Scholar 

  21. J.C. Holzer, R. Birringer, J. Eckert, C.E. Krill Ill, and W.L. Johnson: Mater. Res. Soc. Symp. Proc., 1992, vol. 272, pp. 282–88.

    Google Scholar 

  22. J. Weissmüller, J. Löffler, and M. Kleber: Nanostruct. Mater., 1995, vol. 6, pp. 105–14.

    Article  Google Scholar 

  23. X.Y. Qin, X.J. Wu, and L.D. Zhang: Nanostruct. Mater., 1995, vol. 5, pp. 101–10.

    Article  CAS  Google Scholar 

  24. J.S.C. Jang and C.C. Koch: Scripta Metall. Mater., 1990, vol. 24, p. 1599.

    Article  CAS  Google Scholar 

  25. D. Tabor: The Hardness of Metals, Clarendon Press, Oxford, United Kingdom, 1951, p. 95 ff.

    Google Scholar 

  26. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 1976, p. 329 ff.

    Google Scholar 

  27. D.K. Shetty, I.G. Wright, N. Mincer, and A.H. Clauer: J. Mater. Sci., 1985, vol. 20, pp. 1873–82.

    Article  CAS  Google Scholar 

  28. Metals Handbook, vol. 12, Fractography, 9th ed., ASM, Metals Park, OH, 1987, p. 12 ff.

  29. A. Nadai: Theory of Flow and Fracture of Solids, 2nd ed., McGraw-Hill, New York, NY, 1950, p. 527 ff.

    Google Scholar 

  30. T. Haubold, R. Bohn, R. Birringer, and H. Gleiter: Mater. Sci. Eng., 1992, vol. A153, pp. 679–83.

    CAS  Google Scholar 

  31. H. Hahn and H. Gleiter: Scripta Metall., 1979, vol. 13, pp. 3–6.

    Article  CAS  Google Scholar 

  32. D.A. Molodov, J. Swiderski, G. Gottstein, W. Lojkowski, and L.S. Shvindlerman: Acta Metall. Mater., 1994, vol. 42, pp. 3397–3407.

    Article  CAS  Google Scholar 

  33. P.G. Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, p. 84 ff.

    Google Scholar 

  34. A. Cracknell and A.J. Petch: Acta Metall., 1955, vol. 3, pp. 186–89.

    Article  CAS  Google Scholar 

  35. H. Conrad and G. Schoek: Acta Metall., 1960, vol. 8, pp. 791–96.

    Article  CAS  Google Scholar 

  36. M.M. Hutchinson: Phil. Mag., 1963, vol. 8, pp. 121–27.

    Google Scholar 

  37. J.G.Y. Chow, S.B. McRickard, and D.H. Gurinsky: Special Technical Publication No. 341, ASTM, Philadelphia, PA, 1963, pp. 46–66.

    Google Scholar 

  38. W. Morrison: Trans. Am. Soc. Met., 1966, vol. 59, pp. 824–46

    CAS  Google Scholar 

  39. E. Anderson, D.L.W. King, and J. Spreadborough: Trans. AIME, 1968, vol. 242, pp. 115–19.

    CAS  Google Scholar 

  40. R.A. Jago and N. Hansen: Acta Metall., 1986, vol. 34, pp. 1711–20.

    Article  CAS  Google Scholar 

  41. N. Hansen: Acta Metall., 1977, vol. 25, pp. 863–69.

    Article  CAS  Google Scholar 

  42. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng., 1991, vol. A137, p. 35.

    CAS  Google Scholar 

  43. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: Mater. Sci. Eng., 1997, vols. A234-A236, pp. 77–82.

    Google Scholar 

  44. R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet: Scripta Metall. Mater., 1992, vol. 27, pp. 855–60.

    Article  CAS  Google Scholar 

  45. A.W. Thompson: in Work Hardening in Tension and Fatigue, A.W. Thompson, ed., American Institute of Mining, Metallurgical and Petroleum Engineers, New York, NY, 1977, pp. 89–126.

    Google Scholar 

  46. R.W. Armstrong: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Elmstord, NY, 1979, pp. 795–800.

    Google Scholar 

  47. C.A. Pampillo: J. Mater. Sci., 1975, vol. 10, pp. 1194–1227.

    Article  CAS  Google Scholar 

  48. B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1993, p. 249 ff.

    Google Scholar 

  49. B. Günther, A. Baalmann, and H. Weiss: Mater. Res. Soc. Symp. Proc., 1990, vol. 195, pp. 611–15.

    Google Scholar 

  50. R. Suryanarayanan, C.A. Frey, S.M.L. Sastry, B.E. Waller, and W.E. Buhro: in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, pp. 407–13.

    Google Scholar 

  51. J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Aifantis: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2479–81.

    CAS  Google Scholar 

  52. J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Hackney: in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, pp. 415–20.

    Google Scholar 

  53. J.E. Carsley, G.R. Shaik, W.W. Milligan, and E.C. Aifantis: in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, E. Ma, B. Fultz, J. Morral, and P. Nash, eds., TMS, Warrendale, PA, 1997, pp. 183–92.

    Google Scholar 

  54. G.R. Shaik and W.W. Milligan: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 895–904.

    CAS  Google Scholar 

  55. X.H. Zhu, J.E. Carsley, W.W. Milligan, and E.C. Aifantis: Scripta Mater., 1997, vol. 36, pp. 721–26.

    Article  CAS  Google Scholar 

  56. J.P. Hirth: “Viewpoint Set on Shear Bands” in Scripta Met., J.P. Hirth, ed., 1984, vol. 18, pp. 421–58.

  57. H. Dève, S. Harren, C. McCullough, and R.J. Asaro: Acta Metall., 1988, vol. 36, pp. 341–65.

    Article  Google Scholar 

  58. H.E. Dève and R.J. Asaro: Metall. Trans. A, 1989, vol. 20A, pp. 579–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Mechanical Behavior of Bulk Nanocrystalline Solids,” presented at the 1997 Fall TMS Meeting and Materials Week, September 14–18, 1997, in Indianapolis, Indiana, under the auspices of the Mechanical Metallurgy (SMD), Powder Materials (MDMD), and Chemistry and Physics of Materials (EMPMD/SMD) Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malow, T.R., Koch, C.C. Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Metall Mater Trans A 29, 2285–2295 (1998). https://doi.org/10.1007/s11661-998-0106-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0106-1

Keywords

Navigation