Skip to main content
Log in

An Approach for the Microstructure-Sensitive Simulation of Shear-Induced Deformation and Recrystallization in Al–Si Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al alloys are known to experience extensive grain refinement during shear-assisted processing techniques, an effect driven by dynamic dislocation density generation and microstructural restoration assisted by deformation-induced heating. In order to predict the extent of grain refinement of Al–Si alloys in response to the friction-assisted shear deformation, a coupling of Finite Element Method and the Kinetic Monte Carlo Potts Model is utilized in this work. We show that our microstructure-sensitive model simulates the microstructural response of Al–Si alloys to influence of shear deformation and temperature, as a recrystallization and grain growth phenomenon. The microstructural evolution of Al–Si alloys was simulated as a function of deformation, temperature, and Si composition. Simulations were performed on microstructures representing alloy compositions corresponding to pure Al, Al–1 pct Si, and Al–4 pct Si, for temperatures ranging 300 °C to 400 °C and several different magnitudes of shear. Model predictions were validated with experimental results of the grain size and orientation changes in Al–Si alloys during pin-on-disk tribometer experiments. Further, these simulations predict that the increase in Si composition results in larger heterogeneities in strain distribution under shear and commensurately tepid recrystallization. This demonstrates a plausible physical explanation for variations in grain size observed in tribometric experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Whalen, V. Joshi, N. Overman, D. Caldwell, C. Lavender, and T. Skszek: in Magnesium Technology 2017, K.N. Solanki, D. Orlov, A. Singh, and N.R. Neelameggham, eds., Springer, 2017, pp. 315–22.

  2. S. Whalen, N. Overman, V. Joshi, T. Varga, D. Gra, and C. Lavender: Mater. Sci. Eng. A., 2019, vol. 755, pp. 278–88.

    Article  CAS  Google Scholar 

  3. J.T. Darsell, N.R. Overman, V.V. Joshi, S.A. Whalen, and S.N. Mathaudhu: J. Mater. Eng. Perform., 2018, vol. 27, pp. 4150–61.

    Article  CAS  Google Scholar 

  4. N.R. Overman, S.A. Whalen, M.E. Bowden, M.J. Olszta, K. Kruska, T. Clark, E.L. Stevens, J.T. Darsell, V.V. Joshi, X. Jiang, K.F. Mattlin, and S.N. Mathaudhu: Mater. Sci. Eng. A., 2017, vol. 701, pp. 56–68.

    Article  CAS  Google Scholar 

  5. P. Zhao, Y. Wang, and S.R. Niezgoda: Int. J. Plast., 2018, vol. 100, pp. 52–68.

    Article  CAS  Google Scholar 

  6. N.J. Petch: Prog. Met. Phys., 1954, vol. 5, pp. 1–52.

    Article  CAS  Google Scholar 

  7. Z.C. Cordero, B.E. Knight, and C.A. Schuh: Int. Mater. Rev., 2016, vol. 61, pp. 495–512.

    Article  CAS  Google Scholar 

  8. I. Charit and R.S. Mishra: Scr. Mater., 2008, vol. 58, pp. 367–71.

    Article  CAS  Google Scholar 

  9. B. Gwalani, M. Olszta, S. Varma, L. Li, A. Soulami, E. Kautz, S. Pathak, A. Rohatgi, P.V. Sushko, S. Mathaudhu, C.A. Powell, and A. Devaraj: Commun. Mater., 2020, vol. 1, pp. 1–8.

    Article  Google Scholar 

  10. Z. Zhang, Q. Wu, M. Grujicic, and Z.Y. Wan: J. Mater. Sci., 2016, vol. 51, pp. 1882–95.

    Article  CAS  Google Scholar 

  11. M. Jamalian, V. V Joshi, S. Whalen, C. Lavender, and D.P. Field: in 18th International Conference on Textures of Materials, IOP Publishing, 2018, pp. 1–8.

  12. C.G. Figueroa, R. Schouwenaars, J. Cortés-Pérez, R. Petrov, and L. Kestens: Mater. Charact., 2018, vol. 138, pp. 263–73.

    Article  CAS  Google Scholar 

  13. K.G. Basavakumar, P.G. Mukunda, and M. Chakraborty: J. Mater. Process. Technol., 2007, vol. 186, pp. 236–45.

    Article  CAS  Google Scholar 

  14. S. Meenia, F. Khan, S. Babu, R.J. Immanuel, S.K. Panigrahi, and J.G.D. Ram: Mater. Charact., 2016, vol. 113, pp. 134–43.

    Article  CAS  Google Scholar 

  15. A.G. Rao, K.R. Ravi, B. Ramakrishnarao, V.P. Deshmukh, A. Sharma, N. Prabhu, and B.P. Kashyap: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 1519–29.

    Article  CAS  Google Scholar 

  16. S. Jin, Z. Luo, X. An, X. Liao, J. Li, and G. Sha: J. Mater. Sci. Technol., 2021, vol. 68, pp. 199–208.

    Article  Google Scholar 

  17. S.G. Shabestari and F. Shahri: J. Mater. Sci., 2004, vol. 39, pp. 2023–32.

    Article  CAS  Google Scholar 

  18. S. Richmire and M. Haghshenas: in IOP Conference Series: Materials Science and Engineering, vol. 174, IOP Publishing, 2017, pp. 1–8.

  19. L.C.L. Ko and J.Q. Da Fonseca: in ICAA13 Pittsburgh, H. Weiland, A.D. Rollett, and W.A. Cassada, eds., Springer, 2012, pp. 1607–12.

  20. E. Damavandi, S. Nourouzi, S.M. Rabiee, R. Jamaati, and J.A. Szpunar: J. Alloy. Compunds., 2021, vol. 858, pp. 1–18.

    Google Scholar 

  21. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–24.

    Article  CAS  Google Scholar 

  22. C.S. Smith: Trans. Am. Inst. Min. Eng., 1948, vol. 175, pp. 15–51.

    Google Scholar 

  23. A. Khalkhali and M. Saranjam: Int. J. Automot. Eng., 2015, vol. 5, pp. 932–38.

    Google Scholar 

  24. M.P. Iqbal, A. Tripathi, R. Jain, R.P. Mahto, S.K. Pal, and P. Mandal: Int. J. Mech. Sci., 2020, vol. 185, p. 105882.

    Article  Google Scholar 

  25. W. Frazier, C. Wang, Z. Xu, and N. Overman: Metall. Mater. Trans. A., 2020, vol. 51, pp. 533–44.

    Article  CAS  Google Scholar 

  26. C. Wang, A. Soulami, Z. Xu, G. Cheng, S. Hu, D. Burkes, W.E. Frazier, K.S. Choi, X. Wang, X. Hu, C.A. Lavender, and V.V. Joshi: Process Modeling of U-10wt % Mo Alloys Using Integrated Computational Materials Engineering, PNNL-28640. Richland, WA: Pacific Northwest National Laboratory, 2019.

  27. G. Cheng, X. Hu, W.E. Frazier, C.A. Lavender, and V.V. Joshi: Mater. Sci. Eng. A., 2018, vol. 736, pp. 41–52.

    Article  CAS  Google Scholar 

  28. S.A. Langer, A.C.E. Reid, R.C. Lua, E.R. Garcia, and V.R. Coffman: Int. J. Mater. Prod. Technol., 2009, vol. 35, pp. 361–73.

    Article  Google Scholar 

  29. P.S. Sahni, G.S. Grest, M.P. Anderson, and D.J. Srolovitz: Phys. Rev. Lett., 1983, vol. 50, pp. 263–66.

    Article  CAS  Google Scholar 

  30. P.S. Sahni, D.J. Srolovitz, G.S. Grest, M.P. Anderson, and S.A. Safran: Phys. Rev. B., 1983, vol. 28, pp. 2705–16.

    Article  CAS  Google Scholar 

  31. M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 783–91.

    Article  CAS  Google Scholar 

  32. G.S. Grest, D.J. Srolovitz, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 509–20.

    Article  CAS  Google Scholar 

  33. K. Adam, J.M. Root, Z. Long, and D.P. Field: J. Mater. Eng. Perform., 2017, vol. 26, pp. 207–13.

    Article  CAS  Google Scholar 

  34. P.E. Goins and W.E. Frazier: Acta Mater., 2020, vol. 188, pp. 79–91.

    Article  CAS  Google Scholar 

  35. E.A. Holm, M.A. Miodownik, and A.D. Rollett: Acta Mater., 2003, vol. 51, pp. 2701–16.

    Article  CAS  Google Scholar 

  36. V. Tikare and E. Holm: J. Am. Ceram. Soc., 1998, vol. 81, pp. 480–84.

    Article  CAS  Google Scholar 

  37. W.E. Frazier, G.S. Rohrer, and A.D. Rollett: Acta Mater., 2015, vol. 96, pp. 390–98.

    Article  CAS  Google Scholar 

  38. E.R. Homer, V. Tikare, and E.A. Holm: Comp Mat Sci., 2013, vol. 69, pp. 414–23.

    Article  Google Scholar 

  39. E. Ising: Zeitschrift fur Phys., 1925, vol. 31, pp. 253–58.

    Article  CAS  Google Scholar 

  40. R.B. Potts and J.C. Ward: Prog. Theor. Phys., 1955, vol. 13, pp. 38–46.

    Article  Google Scholar 

  41. P.E. Goins and E.A. Holm: Comput. Mater. Sci., 2016, vol. 124, pp. 411–19.

    Article  CAS  Google Scholar 

  42. D. Zöllner: Comput. Mater. Sci., 2014, vol. 86, pp. 99–107.

    Article  Google Scholar 

  43. W.E. Frazier, S. Hu, and V.V. Joshi: Comput. Mater. Sci., 2020, vol. 185, p. 109945.

    Article  Google Scholar 

  44. D. Raabe: Acta Mater., 2000, vol. 48, pp. 1617–28.

    Article  CAS  Google Scholar 

  45. S.P. Chen, D.N. Hanlon, S. Van Der Zwaag, Y.T. Pei, and J.T.M. Dehosson: J. Mater. Sci., 2002, vol. 37, pp. 989–95.

    Article  CAS  Google Scholar 

  46. B. Gwalani, W. Fu, M. Olszta, J. Silverstein, D. Yadav, P. Manimunda, A. Guzman, K. Xie, A. Rohatgi, S. Mathaudhu, C. Powell, P. Sushko, and Y. Li: Under Submission, 2021.

  47. M. Lewandowska, T. Wejrzanowski, and K.J. Kurzydłowski: J. Mater. Sci., 2008, vol. 43, pp. 7495–7500.

    Article  CAS  Google Scholar 

  48. M.C. Santos, A.R. Machado, and M.A.S. Barrozo: Temperature in Machining of Aluminum Alloys, https://www.intechopen.com/chapters/60618.

  49. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier Ltd, Amsterdam, 2004.

    Google Scholar 

  50. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A., 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  51. X.M. Chen, L.T. Li, W.Z. Chen, W.C. Zhang, L.X. Zhang, Y.D. Qiao, and E.D. Wang: Mater. Sci. Eng. A., 2017, vol. 708, pp. 351–59.

    Article  CAS  Google Scholar 

  52. L. Chen, F. Yuan, P. Jiang, J. Xie, and X. Wu: Mater. Sci. Eng. A., 2017, vol. 694, pp. 98–109.

    Article  CAS  Google Scholar 

  53. R.A. Vandermeer and N. Hansen: Acta Mater., 2008, vol. 56, pp. 5719–27.

    Article  CAS  Google Scholar 

  54. S.L. Thomas, K. Chen, J. Han, P.K. Purohit, and D.L. Srolovitz: Nat. Commun., 2017, vol. 8, pp. 1–12.

    Article  CAS  Google Scholar 

  55. T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker: Science., 2009, vol. 326, pp. 1686–90.

    Article  CAS  Google Scholar 

  56. M. Winning, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2002, vol. 50, pp. 353–63.

    Article  CAS  Google Scholar 

  57. D.A. Molodov, V.A. Ivanov, and G. Gottstein: Acta Mater., 2007, vol. 55, pp. 1843–48.

    Article  CAS  Google Scholar 

  58. S.L. Thomas, A.H. King, and D.J. Srolovitz: Acta Mater., 2016, vol. 113, pp. 301–10.

    Article  CAS  Google Scholar 

  59. Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Mater. Sci. Eng. A., 2006, vol. 433, pp. 269–78.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL) as part of the Solid Phase Processing Science initiative. PNNL is a multiprogram national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL0-1830.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Frazier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 8, 2021; accepted January 13, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazier, W.E., Li, L., Gwalani, B. et al. An Approach for the Microstructure-Sensitive Simulation of Shear-Induced Deformation and Recrystallization in Al–Si Alloys. Metall Mater Trans A 53, 1450–1461 (2022). https://doi.org/10.1007/s11661-022-06606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06606-4

Navigation