Skip to main content
Log in

Higher Nitriding Efficiency in Ultrafine-Grained Iron Processed by Ultrasonic Nanocrystal Surface Modification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the nitriding efficiency in an ultrafine-grained iron was investigated. Prior to nitriding, the ultrasonic nanocrystalline surface modification (UNSM) technique was used to process the coarse-grained iron to obtain ultrafine-grained iron. Gas nitriding was conducted for the UNSM-treated iron and the coarse-grained iron at temperatures from 300 °C to 560 °C. The results indicate that the combination of UNSM and nitriding provide much higher efficiency for hardening than the sum of the efficiencies of UNSM alone and nitriding alone. Nitride nucleation was confirmed in the diffusion layer of the UNSM-treated iron following the nitriding process, enhancing the hardness after nitriding. X-ray diffraction patterns were obtained for both the UNSM-treated iron subjected to nitriding as well as iron that underwent only nitriding at different temperatures. It was also found that the minimum temperatures required to form nitrides, including γ′-Fe4N, ε-Fe3N, ε-Fe2N, and FeN, were reduced because of the high chemical potential at the grain boundaries. The theoretical analysis suggests that heterogeneous nitride nucleation at grain boundaries is the key factor that contributes to the enhancement in hardness in the nitriding layer in ultrafine-grained metals and nanocrystalline metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci: Surf. Coatings Technol., 2006, vol. 200, pp. 3511–7.

    Article  CAS  Google Scholar 

  2. S.R. Hosseini and A. Ahmadi: Vacuum., 2013, vol. 87, pp. 30–9. .

    Article  CAS  Google Scholar 

  3. M.M. Ali and S.G.S. Raman: Tribol. Lett., 2010, vol. 38, pp. 291–9. .

    Article  CAS  Google Scholar 

  4. K. Genel, M. Demirkol, and M. Capa: Mater. Sci. Eng. A., 2000, vol. 279, pp. 207–16. .

    Article  Google Scholar 

  5. L. Torchane, P. Bilger, J. Dulcy, and M. Gantois: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 1823–35. .

    Article  CAS  Google Scholar 

  6. R. Kouba, M. Keddam, and M.E. Djeghlal: J. Alloys Compd., 2012, vol. 536, pp. 124–31. .

    Article  CAS  Google Scholar 

  7. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu: Science., 2003, vol. 299, pp. 686–8. .

    Article  CAS  Google Scholar 

  8. B. Wu, P. Wang, Y. Pyoun, J. Zhang, and R. Murakami: Surf. Coat. Technol., 2013, vol. 216, pp. 191–8. .

    Article  CAS  Google Scholar 

  9. S. Kikuchi, Y. Nakahara, and J. Komotori: Int. J. Fatigue., 2010, vol. 32, pp. 403–10. .

    Article  CAS  Google Scholar 

  10. W.P. Tong, Z. Han, L.M. Wang, J. Lu, and K. Lu: Surf. Coat. Technol., 2008, vol. 202, pp. 4957–63. .

    Article  CAS  Google Scholar 

  11. M. Laleh, F. Kargar, and M. Velashjerdi: ASM Int., 2013, vol. 22, pp. 1304–10. .

    CAS  Google Scholar 

  12. M. Wohlschlögel, U. Welzel, and E.J. Mittemeijer: Appl. Phys. Lett., 2007, vol. 91, pp. 91–4. .

    Article  CAS  Google Scholar 

  13. D. Moszyński, I. Moszyńska, and W. Arabczyk: Mater. Lett., 2012, vol. 78, pp. 32–4. .

    Article  CAS  Google Scholar 

  14. W. Arabczyk, J. Zamłynny, and D. Moszyński: Polish J. Chem. Technol., 2010, vol. 12, pp. 38–43. .

    Article  Google Scholar 

  15. H. Ferkel, M. Glatzer, Y. Estrin, and R.Z. Valiev: Scr. Mater., 2002, vol. 46, pp. 623–8. .

    Article  CAS  Google Scholar 

  16. P. Heitjans and J. Krger: Diffusion in Condensed Matter Methods, Materials, Models. Springer, New York, 2005.

    Google Scholar 

  17. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817. .

    Article  CAS  Google Scholar 

  18. M. Nomura and J.B. Adams: J. Mater. Res., 1995, vol. 10, pp. 2916–24. .

    Article  CAS  Google Scholar 

  19. B.P. Uberuaga, L.J. Vernon, E. Martinez, and A.F. Voter: Sci. Rep., 2015, vol. 5, p. 9095. .

    Article  CAS  Google Scholar 

  20. D. Moszyński, K. Kiełbasa, and W. Arabczyk: Mater. Chem. Phys., 2013, vol. 141, pp. 674–9. .

    Article  CAS  Google Scholar 

  21. J. Zhao, G.-X. Wang, C. Ye, and Y. Dong: Comput. Mater. Sci., 2016, vol. 118, pp. 342–52. .

    Article  CAS  Google Scholar 

  22. W.P. Tong, C.S. He, J.C. He, L. Zuo, N.R. Tao, and Z.B. Wang: Appl. Phys. Lett., 2006, vol. 89, pp. 2–5. .

    Google Scholar 

  23. R. Song, D. Ponge, R. Kaspar, and D. Raabe: Zeitschrift für Met., 2004, vol. 95, pp. 513–7. .

    CAS  Google Scholar 

  24. C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K.K. Wiezorek, Z. Zhou, D. Qian, S.R. Mannava, and V.K. Vasudevan: Mater. Sci. Eng. A., 2014, vol. 613, pp. 274–88. .

    Article  CAS  Google Scholar 

  25. C. Ye, X. Zhou, A. Telang, H. Gao, Z. Ren, H. Qin, S. Suslov, A.S. Gill, S.R. Mannava, D. Qian, G.L. Doll, A. Martini, N. Sahai, and V.K. Vasudevan: J. Mech. Behav. Biomed. Mater., 2016, vol. 53, pp. 455–62. .

    Article  CAS  Google Scholar 

  26. A. Cherif, Y. Pyoun, and B. Scholtes: J. Mater. Eng. Perform., 2010, vol. 19, pp. 282–6. .

    Article  CAS  Google Scholar 

  27. A. Amanov, I.S. Cho, Y.S. Pyoun, C.S. Lee, and I.G. Park: Wear., 2012, vol. 286–287, pp. 136–44. .

    Article  CAS  Google Scholar 

  28. H. Natter, M. Schmelzer, M.-S. Löffler, C.E. Krill, A. Fitch, and R. Hempelmann: J. Phys. Chem. B., 2000, vol. 104, pp. 2467–76. .

    Article  CAS  Google Scholar 

  29. R.A. Vandermeer and H. Hu: Acta Metall. Mater., 1994, vol. 42, pp. 3071–5. .

    Article  CAS  Google Scholar 

  30. W.P. Tong, C.Z. Liu, W. Wang, N.R. Tao, Z.B. Wang, L. Zuo, and J.C. He: Scr. Mater., 2007, vol. 57, pp. 533–6. .

    Article  CAS  Google Scholar 

  31. L. Lutterotti, D. Chateigner, S. Ferrari, and J. Ricote: Thin Solid Films., 2004, vol. 450, pp. 34–41. .

    Article  CAS  Google Scholar 

  32. D. Laniel, A. Dewaele, S. Anzellini, and N. Guignot: J. Alloys Compd., 2018, vol. 733, pp. 53–8. .

    Article  CAS  Google Scholar 

  33. E.J.E. Mittemeijer and M.A.J.M. Somers: Surf. Eng., 1997, vol. 13, pp. 483–97. .

    Article  CAS  Google Scholar 

  34. E.S. Puchi-Cabrera: Surf. Eng., 2004, vol. 20, pp. 332–44. .

    Article  CAS  Google Scholar 

  35. R.D. Kamachali: RSC Adv., 2020, vol. 10, pp. 26728–41. .

    Article  Google Scholar 

  36. J.C. Fisher: J. Appl. Phys., 1951, vol. 22, p. 74. .

    Article  CAS  Google Scholar 

  37. E.H.D.M. Van Voorthuysen, D.O. Boerma, N.C. Chechenin, E.H.M. Van Voorthuysen, D.O. Boerma, N.C. Chechenin, E.H.D.M. Van Voorthuysen, D.O. Boerma, N.C. Chechenin, E.H.M. Van Voorthuysen, D.O. Boerma, and N.C. Chechenin: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 2593–8. .

    Article  Google Scholar 

  38. P. Lejček, L. Zheng, S. Hofmann, and M. Šob: Entropy., 2014, vol. 16, pp. 1462–83. .

    Article  CAS  Google Scholar 

  39. P. Lejček and S. Hofmann: Acta Mater., 2019, vol. 170, pp. 253–67. .

    Article  CAS  Google Scholar 

  40. C.L. Briant: Scr. Metall., 1987, vol. 21, pp. 71–4. .

    Article  CAS  Google Scholar 

  41. P. Stender, Z. Balogh, and G. Schmitz: Phys. Rev. B., 2011, vol. 83, p. 121407. .

    Article  CAS  Google Scholar 

  42. M.A.J. Somers and E.J. Mittemeijer: Metall. Mater. Trans. A., 1995, vol. 26, pp. 57–74. .

    Article  Google Scholar 

  43. B.S. Bokstein, M.I. Mendelev, and D.J. Srolovitz: Thermodynamics and Kinetics in Materials Science: A Short Course. Oxford University Press, Oxford, 2005.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from startup funds and the Firestone Research Fellowship of The University of Akron. We also would like to thank Dr. Eric J. Mittemeijer from the Max Planck Institute for Metal Research for his valuable input. This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (through Award Number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is part of the National Nanotechnology Coordinated Infrastructure (NNCI).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yalin Dong or Chang Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 1, 2020, accepted August 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Ren, Z., Sang, X. et al. Higher Nitriding Efficiency in Ultrafine-Grained Iron Processed by Ultrasonic Nanocrystal Surface Modification. Metall Mater Trans A 52, 4813–4826 (2021). https://doi.org/10.1007/s11661-021-06426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06426-y

Navigation