Skip to main content
Log in

Tensile Behavior of Air Plasma Spray MCrAlY Coatings: Role of High Temperature Agings and Process Defects

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

\(\beta \)-\(\gamma \) MCrAlY coatings generally exhibit a brittle mechanical behavior below 600 °C. When exposed at elevated temperatures, the microstructure of such coatings evolves, leading to an increasing content of \(\gamma \) phase, i.e., the ductile phase, and a decreasing content of \(\beta \) phase, i.e., the brittle phase. Therefore, the evolution of the mechanical properties of such environment-protective materials is worth of investigation. In the present study, a \(\beta \)-\(\gamma \) NiCoCrAlY coating was processed by air plasma spray (APS) technology. \(150\,\mu \text {m}\)-thin freestanding specimens were prepared then aged in an oxidative atmosphere at high temperatures (950 ºC up to 1150 ºC) for different durations to simulate in-service degradation of the coatings. Microtensile testings were conducted at room temperature for all the aging variants and the mechanical properties of the aged specimens were found to evolve as follows: (i) an increase in both Young’s modulus and tensile strength and a loss in ductility for aging temperatures below 1050 °C, (ii) a decrease in Young’s modulus and a gain in ductility for aging temperatures above 1050 °C, and (iii) a significant scatter in mechanical properties for high temperature agings. The low ductility observed for high temperature agings was related to intruded oxides developing during the aging treatment, heterogeneously distributed in the volume of the coating. The gain in ductility was mainly attributed to the \(\beta \)-phase decrease, the loss in interconnection between \(\beta \) phases compared to the as-received microstructure and a topological inversion of the \(\beta \)-\(\gamma \) microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. L. Chaboche, F. Gallerneau: Fatigue Fract. Eng. Mater. Struct. 2001, vol. 24 (6), pp. 405–418.

    Google Scholar 

  2. R. Reed: The Superalloys: Fundamentals and Applications: Cambridge University Press, 2008.

    Google Scholar 

  3. M. Bensch, C. Konrad, E. Fleischmann, C. Rae, U. Glatzel: Mater. Sci. Eng. A 2013, vol. 577, pp. 179–188.

    CAS  Google Scholar 

  4. R. Mévrel: Mater. Sci. Eng. A 1989, vol. 120-121, pp. 13–24.

    Google Scholar 

  5. T. Rhys-Jones: . Corros. Sci. 29:623-646. 1989.

    Google Scholar 

  6. S. Bose: High Temperature Coatings: 1st Edition: Vol. 81: Butterworth-Heinemann, 2007.

    Google Scholar 

  7. A. Strang, E. Lang: . In: R. Brunetaud, D. Coutsouradis, T. Gibbons, Y. Lindblom, D. Meadowcroft, R. Stickler (Eds.), High Temperature Alloys for Gas Turbines. Springer, Springer. 1982. pp. 469–506.

    Google Scholar 

  8. K. Schneider, H. Grünling (1983) Thin Solid Films 107(4): 395-416.

    CAS  Google Scholar 

  9. J. Veys, R. Mévrel: Mater. Sci. Eng. 88 (1988), pp. 253-260

    Google Scholar 

  10. D. Texier: Measurement and Evolution of the Gradient of Mechanical Properties in MCrAlY Coated MC2 Nickel Based Superalloy System. Dissertation, Université de Toulouse, Toulouse, 2013.

  11. K. Hemker, B. Mendis, C. Eberl: Mater. Sci. Eng. A 2008, vol. 483-484, pp. 727–730.

    Google Scholar 

  12. D. Texier, D. Monceau, Z. Hervier, E. Andrieu: Surf. Coat. Technol. 2016, vol. 307, pp. 81–90.

    CAS  Google Scholar 

  13. D. Texier, D. Monceau, F. Crabos, E. Andrieu: Surf. Coat. Technol. 2017, vol. 326, pp. 28–36.

    CAS  Google Scholar 

  14. H. Chen, T. Hyde: Mater. Sci. Eng. A 2017, vol. 680, pp. 203–09.

    CAS  Google Scholar 

  15. T. Fiedler, H.-R. Sinning, J. Rösler, M. Bäker: Surf. Coat. Technol. 2018, vol. 349, pp. 32 – 36.

    CAS  Google Scholar 

  16. G. Jackson, W. Sun, D. McCartney: Mater. Sci. Eng. A 2019, vol. 754, pp. 479 – 490.

    CAS  Google Scholar 

  17. M. Hebsur, R. Miner: Mater. Sci. Eng. 1986, vol. 83, pp. 239–245.

    CAS  Google Scholar 

  18. J. Nicholls: JOM 2000, vol. 52 (1), pp. 28–35.

    CAS  Google Scholar 

  19. E. Chataigner, L. Remy: Thermomechanical fatigue behaviour of coated and bare nickel-based superalloy single crystals. In: M. Verrilli, M. Castelli (Eds.), Thermomechanical Fatigue Behavior of Materials, Vol 2. ASTM International, West Conshohocken, 1996. pp. 3–26.

    Google Scholar 

  20. T. Pollock, B. Laux, C. Brundidge, A. Suzuki, M. He: J. Am. Ceram. Soc. 2011, vol. 94 (S1), pp. s136–s145.

    CAS  Google Scholar 

  21. R. Subramanian, Y. Mori, S. Yamagishi, M. Okazaki: Metall. Mater. Trans. A 2015, vol. 46A (9), pp. 3999–4012.

    Google Scholar 

  22. P. Sallot, V. Maurel, L. Rémy, F. NGuyen, A. Longuet: Metall. Mater. Trans. A 2015, vol. 46A (10), pp. 4589–4600.

    Google Scholar 

  23. M. Z. Alam, C. Parlikar, D. Chatterjee, D. K. Das: Mater. Des. 2017, vol. 114, pp. 505–514.

    CAS  Google Scholar 

  24. V. A. Esin, V. Maurel, P. Breton, A. Köster, S. Selezneff: Acta Mater. 2016, vol. 105, pp. 505–518.

    CAS  Google Scholar 

  25. M. P. Taylor, H. E. Evans, E. P. Busso, Z. Q. Qian: Acta Mater. 2006, vol. 54 (12), pp. 3241–3252.

    CAS  Google Scholar 

  26. R. Hüttner, J. Gabel, U. Glatzel, R. Völkl: Mater. Sci. Eng. A 2009, vol. 510-511, pp. 307–311.

    Google Scholar 

  27. M. Eskner, R. Sandstrom: Surf. Coat. Technol. 2003, vol. 165, pp. 71–80.

    CAS  Google Scholar 

  28. K. Hemker, W. Sharpe: Annu. Rev. Mater. Res. 2007, vol. 37 (1), pp. 93–126.

    CAS  Google Scholar 

  29. D. Gianola, C. Eberl: JOM 2009, vol. 61 (3), pp. 24–35.

    Google Scholar 

  30. M. Z. Alam, S. Kamat, V. Jayaram, D. Das: Acta Mater. 2014, vol. 67, pp. 278–296.

    CAS  Google Scholar 

  31. D. Texier, D. Monceau, J. C. Salabura, R. Mainguy, E. Andrieu: Mater. High Temp. 2016, vol. 33 (4-5), pp. 325–337.

    CAS  Google Scholar 

  32. D. Texier, D. Monceau, S. Selezneff, A. Longuet, E. Andrieu: Metall. Mater. Trans. A 2020, vol. 51A, pp. 1475–1480.

    Google Scholar 

  33. S. Saeidi, K. T. Voisey, D. G. McCartney: J. Therm. Spray Technol. 2011, vol. 20 (6), pp. 1231–1243.

    CAS  Google Scholar 

  34. D. Pan, M. Chen, P. Wright, K. Hemker: Acta Mater. 2003, vol. 51 (8), pp. 2205–2217.

    CAS  Google Scholar 

  35. C. Eberl, D. Gianola, K. Hemker: Exp. Mech. 2010, vol. 50 (1), pp. 85–97.

    CAS  Google Scholar 

  36. C. Eberl, R. Thomson, D. Gianola, S. Bundschuh: Digital Image Correlation and Tracking—File Exchange—MATLAB Central https://uk.mathworks.com/matlabcentral/fileexchange/50994-digital-image-correlation-and-tracking, 2010.

  37. Praxair Surface Technologies: http://www.praxairsurfacetechnologies.com/components-materials-and-equipment/materials/thermal-spray-powders/mcraly, 2019.

  38. T. Kennerknecht: Fatigue of Micro Molded Materials—Aluminum Bronze and Yttria Stabilized Zirconia: Ph.D. thesis: Fraunhofer Institut fr Werkstoffmechanik, 2014.

  39. S. A. Slaby, O. Kraft, C. Eberl: Fatigue Fract. Eng. Mater. Struct. 2016, vol. 39 (6), pp. 780–789.

    CAS  Google Scholar 

  40. D. Knetsch, M. Funk, T. Kennerknecht, C. Eberl: Mater. Test. 2014, vol. 56 (7-8), pp. 535–541.

    Google Scholar 

  41. S. Fliegener, T. Kennerknecht, M. Kabel: Composites B 2017, vol. 112, pp. 327–343.

    CAS  Google Scholar 

  42. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. James White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona: Nat. Methods 2012, vol. 9 (7), pp. 676–682.

    CAS  Google Scholar 

  43. M. Fukuhara, I. Yamauchi: J. Mater. Sci. 1993, vol. 28 (17), pp. 4681–4688.

    CAS  Google Scholar 

  44. N. Rusović, H. Warlimont: Phys. Status Solid. A 1979, vol. 53 (1), pp. 283–288.

    Google Scholar 

  45. V. Maurel, L. Helfen, R. Soulignac, T. F. Morgeneyer, A. Koster, L. Rémy: Oxid. Met. 2013, vol. 79 (3-4), pp. 313–323.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to René Cluzet for specimen machining, Alain Köster for strain analysis from \(\textit{Centre\,des\,Matriaux}\), and Rémi Roumiguier for help in thin specimen preparation from \(\textit{MIDIVAL}\). D. Texier would like to thank the \(\textit{Agence\,Nationale\,de\,la\,Recherche\,(ANR)}\) for financial support via the ANR-JCJC-COMPAACT project funded from the AAP2018.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Texier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Texier, D., Cadet, C., Straub, T. et al. Tensile Behavior of Air Plasma Spray MCrAlY Coatings: Role of High Temperature Agings and Process Defects. Metall Mater Trans A 51, 2766–2777 (2020). https://doi.org/10.1007/s11661-020-05722-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05722-3

Navigation