Skip to main content
Log in

Influence of Graphene, SiCnp, and G/SiCnp Hybrid Fillers on the Strengthening Mechanisms of Al-Matrix

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AA2124 reinforced with graphene (G), silicon carbide nanoparticles (SiCnp), and graphene-coated SiCnp (GCSiCnp) were fabricated and characterized. GCSiCnp reinforcement was fabricated by ball milling, followed by mixing and milling the reinforcements with AA2124 powders. Consolidation was achieved by cold compaction and hot extrusion (HE). The powders’ morphology and structural evolution were characterized with XRD and SEM. Microhardness and tensile properties were also characterized. Increasing the fillers’ content beyond 5 wt pct deteriorated the composites’ mechanical properties due to the agglomeration of the fillers. Adding 5 wt pct GCSiCnp increased the hardness, specific strength, and modulus of the composite and decreased ductility. Furthermore, 5 wt pct SiCnp induced severe lattice strain by intra-granular dispersion strengthening. The GCSiCnp filler strengthened the Al-matrix via the strong interfacial bonding of the intercalated inter-granular lamination of the hybrid particles within the Al-matrix and the intra-granular dispersion strengthening associated with the individual SiCnp. Adding 5 wt pct G lowered the HE composite’s density and hardness significantly, while the sliding of G-intercalated layers coating the Al-grains facilitated plastic flow along the extrusion direction and enhanced the strength and ductility of the composite compared to that containing 5 wt pct GCSiCnp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Goushegir S.M., Dos Santos J. F., and Amancio-Filho S. T. Mater. Des. 2014, 54, pp.196–206

    CAS  Google Scholar 

  2. Kala H., Mer K. K. S., and Kumar S. Procedia Mater. Sci. 2014, 6. pp.1951–1960.

    CAS  Google Scholar 

  3. Dinaharan I., Kalaiselvan K., and Murugan N. Compos. Commun. 2017, 3, pp.42–46.

    Google Scholar 

  4. Jayalakshmi S, Gupta M (2015) Metallic Amorphous Alloy Reinforcements in Light Metal Matrices Springer Briefs in Materials. Springer, New York

    Google Scholar 

  5. Liu, L. Ke Q., Liu F., Huang C., and Xing L. Mater. Des. 2013, 45. pp.343–348.

    CAS  Google Scholar 

  6. Casati R. and Vedani M. Met., 2014, 4, pp.65–83.

    Google Scholar 

  7. Li J. L., Xiong Y. C., Wang X. D., Yan S. J., Yang C., He W. W., Chen J. Z., Wang S. Q. Zhang X. Y.,and Dai S. L. Mater. Sci. Eng. A 2015, 626, pp.400–405.

    CAS  Google Scholar 

  8. Zhao X. J., Xiao L. R., Zhao Z. W., Guo L., Ru H. Q., Zhang N., and Chen D. L. Ceram. Int. 2014, 40, pp.14295–14303.

    CAS  Google Scholar 

  9. Fadavi Boostani A., Tahamtan S., Jiang Z. Y., Wei D., Yazdani S., Azari Khosroshahi R., Taherzadeh Mousavian R., Xu Zhang J., and Gong D. Compos. Part A Appl. Sci. Manuf. 2015, 68, pp.155–163.

    CAS  Google Scholar 

  10. Kollo L., Leparoux M., Bradbury C. R., Jäggi C., Carreño-Morelli E., and Rodríguez-Arbaizar M. J. Alloys Compd. 2010, 489, pp.394–400.

    CAS  Google Scholar 

  11. Bastwros M., Kim G.Y., Zhu C., Zhang K., Wang S., Tang X., and Wang X. W. Compos. Part B Eng. 2014, 60, pp.111–118.

    CAS  Google Scholar 

  12. Wang J., Li Z., Fan G., Pan H., Chen Z., and Zhang D. Scr. Mater. 2012, 66, pp.594–597

    CAS  Google Scholar 

  13. Khadem H., Nategh S.A., and Yoozbashizadeh S. J. Alloys Compd. 2011, 509, pp.2221–2226.

    CAS  Google Scholar 

  14. Saheb N., Aliyu I. K., Hassan S. F., and Al-Aqeeli N. Mater. (Basel) 2014, 6, pp. 6748–6767.

    Google Scholar 

  15. Dorri Moghadam A., Omrani E., Menezes P. L., and Rohatgi P. K. Compos. Part B Eng. 2015, 77, pp. 402–420.

    CAS  Google Scholar 

  16. Carreño-Gallardo C., Estrada-Guel I., López-Meléndez C., and Martínez-Sánchez R. J. Alloys Compd. 2014, 586, pp. 68–72.

    Google Scholar 

  17. Wu Y. and Lvernia E. J. Scr. Met. Mater. 1992, 27, pp.173-178.

    CAS  Google Scholar 

  18. Conlon K. T. and Wilkinson D. S. Mater. Sci. Eng. A 2001, 317, pp.108–114.

    Google Scholar 

  19. Huang Y., Su Y., Guo X., Guo Q., Ouyang Q., Zhang G. and Zhang D. J. Alloys Compd., 2017, 711, pp. 22–30.

    CAS  Google Scholar 

  20. El-Ghazaly A., Anis G., and Salem H. G. Composites Part A. 2017, 95, pp.325–336.

    CAS  Google Scholar 

  21. A. El Ghazaly, M. Shokeir, S.N. El Moghazi, A. Fathy, M.M. Emara, and H.G. Salem: in Proceeding of the 3rd Pan American Materials Congress 2017, pp. 115–23.

  22. Salem H. G., El-Eskandarany S., and Kandil A., Abdul Fattah H. J. Nanomater. 2009, 2009, pp.1-12.

    Google Scholar 

  23. Mendoza-Duartea J. M., Guela E., Hernandezb F. C. R., Gallardoa C. C., Meléndezc C. L. and Sáncheza R. M. Mater. Res. 2016, 19, pp. 13-19

    Google Scholar 

  24. V.D. Mote, Y. Purushotham, and B.N. Dol: J. Appl. Theor. Phys., 2012, 6, pp. 1–8.

    Google Scholar 

  25. Zhu H. and Qi F. Rare Met. 2011, 30, pp. 550-554.

    CAS  Google Scholar 

  26. El Daly A. A., Abdel Hameed M., Hashish M. and Daoush W. M. Mater. Sci. Eng. A 2013, 559, pp.384-393.

    CAS  Google Scholar 

  27. Reddy A. P., Krishna P. V., Rao E. N., and Murthy N. V. Mater. Today Proceedings. 2017, 4, pp.359-397.

    Google Scholar 

  28. Deaquino-Lara R, Gutiérrez-Castañeda E, Estrada-Guel I, Hinojosa-Ruiz G, Garcia-Sánchez E, Herrera-Ranirez JM, Pérez-Bustamante R, Martínez-Sánchez R (2014) Mater Des 53:1104-1111

    CAS  Google Scholar 

  29. Fallahdoost H., Nouri A., and Azimi A. J. Phys. Chem. Solids 2016, 93, pp.137-144.

    CAS  Google Scholar 

  30. Mann S., Kumar R., and Jindal V. K. Journal of RSC Advances 2017, 36, pp.1-21.

    Google Scholar 

  31. Baradeswaran A. and Laya Perumal A. E. Composites Part B 2014, 56, pp.464-471.

    CAS  Google Scholar 

  32. Bhowmik A, Dey D, Biswas A (2020) Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.436

    Article  Google Scholar 

  33. Ted Cuo M. L. and Tsao C. Y. A. Compos. Sci. and Technol. 2000, 60, pp.65-74.

    Google Scholar 

  34. Kaushik N. Ch. and Rao R. N. Tribol. Int. 2016, 96, pp.184-190

    CAS  Google Scholar 

  35. Challapalli S (2001) Mechanical Alloying and Milling. CRC Press, New York

    Google Scholar 

  36. Reddy M. P., Shakoor R. A., Parande G., Manakari V., Ubaid F., Mohamed A., and Gupta M. Prog. Nat. Sci.: Mater. Int. 2017, 27, pp.606-614.

    CAS  Google Scholar 

  37. Cheng-jin HU, Hong-ge YAN, Ji-hua CHEN, and Bin SU. Trans. Nonferrous Met. Soc. China 2016, 26, pp.1259-1268.

    CAS  Google Scholar 

  38. Salem H. G. and Sadek A. A. J.Mater.Eng. perform. 2010, 19, pp.356-367.

    CAS  Google Scholar 

  39. Eldesouky A, Johnsson M, Svengren H, Attallah MM, Salem HG (2014) J Alloys Compd. 609:215-221

    CAS  Google Scholar 

  40. J.L. Hernandez-Rivera, H. Medellín-Castilo, D.F. De Lange, and L.G. Mejía-Rodríguez: in ASME 2014 International Mechanical Engineering Congress and Exposition, 2014.

  41. Sun Y, Zhang C, Liu B, Meng Q, Ma S, Dai W (2018) Metals 8:499-511

    Google Scholar 

  42. Blanco Fernandez, J., Jimenez Macias, E., Saenz-Diez Muro, J. C., Caputi, L. S., Miriello, D., De Luca, R., & Carvajal Fals, H. D. Metals, 2018 8(2), pp. 113-126.

    Google Scholar 

  43. Shao P, Yang W, Zhang Q, Meng Q, Tan X, Xiu Z, Qiao J, Yu Z, Wu G (2018) Composites A 109:151-162

    CAS  Google Scholar 

  44. Mohammad Islam, Yasir Khalid, Iftikhar Ahmad, Abdulhakim A. Almajid, Amine Achour, Theresa J. Dunn, Aftab Akram, and Saqib Anwar: Metal. and Mat Trans A 2018, 49, pp. 2963-2976.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors of the work would like to acknowledge the Youssef Jamil Science and Technology Research Center for facilitating the use of equipment. The authors would also like to acknowledge the assistance of Eng. Dina Fouad for her time and effort.

Funding

This work was supported by the American University in Cairo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanadi G. Salem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 16, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure (JPG 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokeir, M., El Moghazi, S., Omara, A.F. et al. Influence of Graphene, SiCnp, and G/SiCnp Hybrid Fillers on the Strengthening Mechanisms of Al-Matrix. Metall Mater Trans A 51, 3280–3298 (2020). https://doi.org/10.1007/s11661-020-05721-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05721-4

Navigation