Skip to main content
Log in

Effects of Combined Additions of Mn and Zr on Dispersoid Formation and Recrystallization Behavior in Al-Zn-Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of Mn or Zr additions on the dispersoid formation and recrystallization behavior in Al-Zn-Mg alloys were investigated. The combined additions of Mn and Zr are expected to increase the uniformity of dispersoids and increase the sizes of Al3Zr and Al6Mn dispersoids but decrease their volume fraction, which reduces the pinning force of dispersoids to grain boundaries. Al6Mn dispersoids are incoherent with the Al matrix and result in lower pinning force compared to that of Al3Zr dispersoids. Consequently, the inhibiting effect of combined additions of Mn and Zr on recrystallization is not as strong as that due to Zr addition alone. After hot rolling, the long axis of most ellipsoidal Al6Mn dispersoids tends to be parallel to the rolling direction (RD), resulting in a larger pinning force in the normal direction (ND) than in the RD; therefore, the aspect ratios of recrystallized grains are larger in Mn-containing alloys than in Mn-free alloys. Further, the addition of Mn in Al-Zn-Mg alloy can lead to coarse α-AlFeMnSi constituent particles and, therefore, a higher area fraction of second phase in Mn-containing alloys; as a result, particle-stimulated nucleation (PSN) is the dominant recrystallization mechanism in Mn-containing alloys, while both PSN and strain-induced grain boundary migration (SIBM) exist in Zr-containing alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.D. Liu, X.M. Zhang, M.A. Chen, J.H. You, and X.Y. Zhang: Trans. Nonferr. Met. Soc., 2007, vol. 17, pp. 787–92.

    CAS  Google Scholar 

  2. Y. Deng, Z.M. Yin, K. Zhao, J.Q. Duan, and Z.B. He: J. Alloys Compd., 2012, vol. 530, pp. 71–80.

    CAS  Google Scholar 

  3. N.H. Lee, P.W. Kao, T.Y. Tseng, and J.R. Su: Mater. Sci. Eng. A, 2012, vol. 535, pp. 297–305.

    CAS  Google Scholar 

  4. S.H.S. Ebrahimi, M. Emamy, N. Pourkia, and H.R. Lashgari: Mater. Des., 2010, vol. 31, pp. 4450–56.

    Google Scholar 

  5. J.T.B. Gundersen, A. Aytaç, S. Ono, J.H. Nordlien, and K. Nişancıoğlu: Corros. Sci., 2004, vol. 46, pp. 265–83.

    CAS  Google Scholar 

  6. Y.L. Wu, C. Li, F.H. Froes, and A. Alvarez: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1017–24.

    CAS  Google Scholar 

  7. Y.D. He, X.M. Zhang, and J.H. You: Trans. Nonferr. Met. Soc., 2006, vol. 16, pp. 1228–35.

    CAS  Google Scholar 

  8. S.P. Wen, W. Wang, W.H. Zhao, X.L. Wu, K.Y. Gao, H. Huang, and Z.R. Nie: J. Alloys Compd., 2016, vol. 687, pp. 143–51.

    CAS  Google Scholar 

  9. Y.B. Wang, Y. Lin, and J.M. Zeng: Adv. Mater. Res., 2010, vols. 146–147, pp. 1874–77.

    Google Scholar 

  10. K.H. Chen, H.C. Fang, Z. Zhang, X. Chen, and G. Liu: Mater. Sci. Eng. A, 2008, vol. 497, pp. 426–31.

    Google Scholar 

  11. Y. Deng, Z.M. Yin, J.Q. Duan, K. Zhao, B. Tang, and Z.B. He: J. Alloys Compd., 2012, vol. 517, pp. 118–26.

    CAS  Google Scholar 

  12. J.D. Robson and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 599–613.

    CAS  Google Scholar 

  13. K.P. Mingard, B. Cantor, I.G. Palmer, I.R. Hughes, P.W. Alexander, T.C. Willis, and J. White: Acta Mater., 2000, vol. 48, pp. 2435–49.

    CAS  Google Scholar 

  14. Z.H. Jia, G.Q. Hu, B. Forbord, and J.K. Solberg: Mater. Sci. Eng. A, 2007, vol. 444, pp. 284–90.

    Google Scholar 

  15. Y.J. Li, W.Z. Zhang, and K. Marthinsen: Acta Mater., 2012, vol. 60, pp. 5963–74.

    CAS  Google Scholar 

  16. B.O. Kong and S.W. Nam: Mater. Lett., 1996, vol. 28, pp. 385–91.

    Google Scholar 

  17. E. Anselmino, A. Miroux, and S.V.D. Zwaag: Mater. Charact., 2004, vol. 52, pp. 289–300.

    CAS  Google Scholar 

  18. K. Osamura, K. Kohno, H. Okuda, S. Ochiai, J. Kusui, K. Fujii, K. Yokoe, T. Yokota, and K. Hono: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1829–34.

    Google Scholar 

  19. S.P. Dong and S.W. Nam: Mater. Lett., 1994, vol. 13, pp. 716–18.

    Google Scholar 

  20. P. Ratchev and P. Jessner: Mater. Sci. Forum, 2014, vols. 794–796, pp. 1227–32.

    Google Scholar 

  21. I. Nikulin, A. Kipelova, S. Malopheyev, and R. Kaibyshev: Acta Mater., 2012, vol. 60, pp. 487–97.

    CAS  Google Scholar 

  22. R. Hu, T. Ogura, H. Tezuka, T. Sato, and Q. Liu: J. Mater. Sci. Technol., 2010, vol. 26, pp. 237–43.

    Google Scholar 

  23. Y.B. Kim, Y.H. Chung, K.K. Cho, and M.C. Shin: Scripta Mater., 1997, vol. 36, pp. 111–16.

    Google Scholar 

  24. K. Kannan, J.S. Vetrano, and C.H. Hamilton: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2947–57.

    CAS  Google Scholar 

  25. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Progr. Mater. Sci., 2008, vol. 53, pp. 421–80.

    CAS  Google Scholar 

  26. J.A. Walsh, K.V. Jata, and E.A. Starke: Acta Metall., 1989, vol. 37, pp. 2861–71.

    CAS  Google Scholar 

  27. S.W. Cheong and H. Weiland: Mater. Sci. Forum, 2007, vols. 558–559, pp. 153–58.

    Google Scholar 

  28. D. Tsivoulas, J.D. Robson, C. Sigli, and P.B. Prangnell: Acta Mater., 2012, vol. 60, pp. 5245–59.

    CAS  Google Scholar 

  29. C. Qin, G.Q. Gou, X.L. Che, H. Chen, J. Chen, P. Li, and W. Gao: Mater. Des., 2016, vol. 91, pp. 278–85.

    CAS  Google Scholar 

  30. G. Gou, M. Zhang, H. Chen, J. Chen, P. Li, and Y.P. Yang: Mater. Des., 2015, vol. 85, pp. 309–17.

    CAS  Google Scholar 

  31. T. Dursun and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862–71.

    CAS  Google Scholar 

  32. J.C. Williams and E.A. Starke, Jr.: Acta Mater., 2003, vol. 51, pp. 5775–99.

    CAS  Google Scholar 

  33. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102–07.

    Google Scholar 

  34. H.C. Fang, H. Chao, and K.H. Chen: J. Alloys Compd., 2015, vol. 622, pp. 166–73.

    CAS  Google Scholar 

  35. C. Krishnan, A.K. Kobylecky, and J.R. Kish: Can. Metall. Q., 2015, vol. 54, pp. 349–58.

    CAS  Google Scholar 

  36. B. Li, Q.L. Pan, X. Huang, and Z. Yin: Mater. Sci. Eng. A, 2014, vol. 616, pp. 219–28.

    CAS  Google Scholar 

  37. N.M. Han, X.M. Zhang, S.D. Liu, D.G. He, and R. Zhang: J. Alloys Compd., 2011, vol. 509, pp. 4138–45.

    CAS  Google Scholar 

  38. S.D. Liu, W.J. Liu, Y. Zhang, X.M. Zhang, and Y.L. Deng: J. Alloys Compd., 2010, vol. 507, pp. 53–61.

    CAS  Google Scholar 

  39. F.S. Lin and E.A. Starke, Jr.: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.

    CAS  Google Scholar 

  40. H. Yamada and T. Tanaka: J. Jpn. Inst. Light Met., 1989, vol. 39, pp. 32–37.

    CAS  Google Scholar 

  41. Y. Miyata and S. Yoshihara: 6th Int. Conf. on Aluminum Alloys, 2012, pp. 1897–1902.

  42. A. Godfrey, W.C. Cao, Q. Liu, and N. Hansen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2371–78.

    CAS  Google Scholar 

  43. A. Lens, C. Maurice, and J.H. Driver: Mater. Sci. Forum, 2004, vols. 467–470, pp. 771–76.

    Google Scholar 

  44. M.F. Ashby: Philos. Mag., 1966, vol. 14, pp. 1157–78.

    CAS  Google Scholar 

  45. A.R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 717–28.

    CAS  Google Scholar 

  46. W.C. Yang, S.H. Ji, X.R. Zhou, I. Stone, G. Scamans, G.E. Thompson, and Z.Y. Fan: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3971–80.

    Google Scholar 

  47. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, United Kingdom, 2004, pp. 250–306.

    Google Scholar 

  48. B. Bay and N. Hansen: Metall. Trans. A, 1979, vol. 10A, pp. 279–88.

    CAS  Google Scholar 

  49. F.J. Humphreys: Acta Mater., 1977, vol. 25, pp. 1323–44.

    CAS  Google Scholar 

  50. O. Engler, P. Yang, and X.W. Kong: Acta Mater., 1996, vol. 44, pp. 3349–69.

    CAS  Google Scholar 

  51. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Google Scholar 

  52. Y.Y. Zhang and J.S. Zhang: Mater. Lett., 2011, vol. 65, pp. 1856–58.

    CAS  Google Scholar 

  53. S. Raveendra, H. Paranjape, S. Mishra, H. Weiland, R.D. Doherty, and I. Samajdar: Mater. Sci. Eng. A, 2009, vol. 40, pp. 2220–30.

    Google Scholar 

  54. P. Bate and B. Hutchinson: Scripta Mater., 1997, vol. 36, pp. 195–98.

    CAS  Google Scholar 

  55. J. Sidor, A. Miroux, R. Petrov, and L. Kestens: Acta Mater., 2008, vol. 56, pp. 2495–2507.

    CAS  Google Scholar 

  56. B.O. Kong, J.I. Suk, and S.W. Nam: J. Mater. Sci. Lett., 1996, vol. 15, pp. 763–66.

    CAS  Google Scholar 

  57. Y.L. Deng, Y.Y. Zhang, L. Wan, A.A. Zhu, and X.M. Zhang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2470–77.

    Google Scholar 

  58. H.Q. Lin, L.Y. Ye, L. Sun, T. Xiao, S.D. Liu, Y.L. Deng, and X.M. Zhang: Trans. Nonferr. Met. Soc., 2018, vol. 28, pp. 829–38.

    CAS  Google Scholar 

  59. M. Vlach, I. Stulíková, B. Smola, H. Císařová, T. Kekule, J. Malek, D. Tanprayoon, and V. Neubert: Def. Diffus. Forum, 2013, vols. 334–335, pp. 161–66.

    Google Scholar 

  60. J.D. Robson: Mater. Sci. Eng. A, 2002, vol. 338, pp. 219–29.

    Google Scholar 

  61. T. Ohashi, L. Dai, and N. Fukatsu: Metall. Trans. A, 1986, vol. 17A, pp. 799–806.

    CAS  Google Scholar 

  62. R. Kaibyshev, F. Musin, D.R. Lesuer, and T.G. Nieh: Mater. Sci. Eng. A, 2003, vol. 342, pp. 169–77.

    Google Scholar 

  63. J.D. Robson and P.B. Prangnell: Mater. Sci. Technol., 2002, vol. 18, pp. 607–14.

    CAS  Google Scholar 

  64. A. Deschampls and Y. Brechet: Mater. Sci. Eng. A, 1998, vol. 251, pp. 200–07.

    Google Scholar 

  65. K. Huang, O. Engler, Y.J. Li, and K. Marthinsen: Mater. Sci. Eng. A, 2015, vol. 628, pp. 216–29.

    CAS  Google Scholar 

  66. O. Engler: Scripta Mater., 1997, vol. 37, pp. 1675–83.

    CAS  Google Scholar 

  67. C.S. Smith: Trans. Am. Inst. Min. Eng., 1948, vol. 175, pp. 15–51.

    Google Scholar 

  68. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ. Int., 1998, vol. 38, pp. 913–24.

    CAS  Google Scholar 

  69. K. Huang, K. Marthinsen, Q. Zhao, and R.E. Logé: Progr. Mater. Sci., 2018, vol. 92, pp. 284–359.

    CAS  Google Scholar 

  70. K. Huang and R.E. Logé: Reference Module in Materials Science and Materials Engineering, Elsevier, Oxford, United Kingdom, 2016, pp. 1–8.

    Google Scholar 

  71. E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300901), the Key Project of Science and Technology of Hunan Province (Grant No. 2016GK1004), and the Shenghua Yuying Project of Central South University (Grant No. 20130603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingying Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chen, J., Chai, W. et al. Effects of Combined Additions of Mn and Zr on Dispersoid Formation and Recrystallization Behavior in Al-Zn-Mg Alloys. Metall Mater Trans A 50, 4877–4890 (2019). https://doi.org/10.1007/s11661-019-05368-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05368-w

Navigation