Skip to main content
Log in

Engineering Hierarchical Microstructures via Advanced Thermo-Mechanical Processing of a Modern HSLA Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Advanced thermo-mechanical processing of mild steels in the ferrite phase field has recently achieved breakthrough in grain refinement into the submicron regime. However, these steels often suffer from grain boundary failure and low rates of work hardening. A potential approach to overcome these challenges is to process modern high-strength low-alloy steels with multi-scale hierarchical microstructures. Thus, the applicability of advanced thermo-mechanical processing for achieving such microstructures in a high-strength low-alloy steel was studied. The microstructural evolution during warm deformation of a martensitic/bainitic starting microstructure using a Gleeble 3500 thermo-mechanical simulator at 600 °C followed by a direct aging step was investigated. The strain rate of 10 s−1 led to strain localization and, therefore, the formation of a macroscopic shear band. High-resolution characterization techniques such as electron channeling contrast imaging, electron backscatter diffraction, and transmission electron microscopy were used to reveal the ultrafine grain sizes (~ 0.5 μm) in this shear band. The mechanism behind this refinement is continuous dynamic recrystallization, as the initial grains subdivided into smaller crystallites that are confined by a mix of subgrain and high-angle grain boundaries. Two populations of precipitates were formed. Larger precipitates (mean diameter ~ 150 nm) decorate grain boundaries, whereas smaller precipitates (~ 15 nm) nucleate on dislocations and subgrain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.J. DeArdo, M. Hua, K. Cho, and C.I. Garcia: Mater. Sci. Technol., 2009, vol. 25, pp. 1074–82.

    Article  CAS  Google Scholar 

  2. S. Vervynckt, K. Verbeken, B. Lopez, and J.J. Jonas: Int. Mater. Rev., 2012, vol. 57, pp. 187–207.

    Article  CAS  Google Scholar 

  3. W.B. Morrison: Mater. Sci. Technol., 2009, vol. 25, pp. 1066–73.

    Article  CAS  Google Scholar 

  4. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  5. L.. Teoh: J. Mater. Process. Technol., 1995, vol. 48, pp. 475–81.

    Article  Google Scholar 

  6. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga: Met. Mater. Int., 2014, vol. 20, pp. 807–17.

    Article  CAS  Google Scholar 

  7. Y.W. Kim, S.W. Song, S.J. Seo, S.G. Hong, and C.S. Lee: Mater. Sci. Eng. A, 2013, vol. 565, pp. 430–8.

    Article  CAS  Google Scholar 

  8. Y.W. Kim, J.H. Kim, S.G. Hong, and C.S. Lee: Mater. Sci. Eng. A, 2014, vol. 605, pp. 244–52.

    Article  CAS  Google Scholar 

  9. S. Ghosh and S. Mula: Mater. Sci. Eng. A, 2015, vol. 646, pp. 218–33.

    Article  CAS  Google Scholar 

  10. B.Q. Han and S. Yue: J. Mater. Process. Technol., 2003, vol. 136, pp. 100–4.

    Article  CAS  Google Scholar 

  11. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  12. E. Astafurova, G. Maier, E. Melnikov, E. Naydenkin, A. Smirnov, V. Bataev, P. Odessky, S. Dobatkin, and H.J. Maier: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 3400–9.

    Article  Google Scholar 

  13. A. Ohmori, S. Torizuka, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 1063–71.

    Article  CAS  Google Scholar 

  14. Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki: Scr. Mater., 2007, vol. 57, pp. 465–8.

    Article  CAS  Google Scholar 

  15. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science 2008, vol. 320, pp. 1057–61.

    Article  CAS  Google Scholar 

  16. U.H. Lee, N. Kamikawa, G. Miyamoto, and T. Furuhara: Key Eng. Mater., 2012, vol. 508, pp. 124–7.

    Article  CAS  Google Scholar 

  17. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.

    Article  CAS  Google Scholar 

  18. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881–92.

    Article  CAS  Google Scholar 

  19. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.

    Article  CAS  Google Scholar 

  20. L. Qun, J. Tianfu, G. Yuwei, and L. Hongbiao: Phase Transitions, 2012, vol. 85, pp. 619–29.

    Article  Google Scholar 

  21. H.F. Lan, W.J. Liu, and X.H. Liu: ISIJ Int., 2007, vol. 47, pp. 1652–7.

    Article  CAS  Google Scholar 

  22. S. Malekjani, I.B. Timokhina, I. Sabirov, and P.D. Hodgson: Can. Metall. Q., 2009, vol. 48, pp. 229–35.

    Article  CAS  Google Scholar 

  23. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, and N. Saeidi: Acta Metall. Sin. (English Lett.), 2015, vol. 28, pp. 249–53.

    Article  CAS  Google Scholar 

  24. M. Abbasi, A. Kermanpur, A. Najafizadeh, S. Saeedipour, and Y. Mazaheri: Int. J. ISSI, 2012, vol. 9, pp. 6–10.

    Google Scholar 

  25. F. Foroozmehr, A. Najafizadeh, and A. Shafyei: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5754–8.

    Article  CAS  Google Scholar 

  26. E. Ghassemali, A. Kermanpur, and A. Najafizadeh: J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 6177–81.

    Article  CAS  Google Scholar 

  27. H. Azizi-Alizamini, M. Militzer, and W.J. Poole: Scr. Mater., 2007, vol. 57, pp. 1065–8.

    Article  CAS  Google Scholar 

  28. Y. Okitsu, N. Takata, and N. Tsuji: Scr. Mater., 2009, vol. 60, pp. 76–9.

    Article  CAS  Google Scholar 

  29. S.M. Hosseini, A. Najafizadeh, and A. Kermanpur: J. Mater. Process. Technol., 2011, vol. 211, pp. 230–6.

    Article  CAS  Google Scholar 

  30. J. Tian, G. Xu, W. Liang, and Q. Yuan: Metallogr. Microstruct. Anal., 2017, vol. 6, pp. 233–9.

    Article  CAS  Google Scholar 

  31. B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3402–6.

    Article  Google Scholar 

  32. L. Cheng, Y. Chen, Q. Cai, W. Yu, G. Han, E. Dong, and X. Li: Mater. Sci. Eng. A, 2017, vol. 698, pp. 117–25.

    Article  CAS  Google Scholar 

  33. J. Gallego, A.R. Rodrigues, and L. Montanari: Mater. Res., 2014, vol. 17, pp. 527–34.

    Article  CAS  Google Scholar 

  34. Q. Chao, P.D. Hodgson, and H. Beladi: Mater. Sci. Forum, 2014, vol. 783–786, pp. 679–84.

    Article  Google Scholar 

  35. Q. Chao, P.D. Hodgson, and H. Beladi: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45, pp. 2659–71.

    Article  Google Scholar 

  36. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, and D.L. Chen: J. Alloys Compd., 2017, vol. 718, pp. 170–81.

    Article  CAS  Google Scholar 

  37. R. Song, D. Ponge, and D. Raabe: Scr. Mater., 2005, vol. 52, pp. 1075–80.

    Article  CAS  Google Scholar 

  38. A.J. Wilkinson and P.B. Hirsch: Micron, 1997, vol. 28, pp. 279–308.

    Article  Google Scholar 

  39. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    Article  CAS  Google Scholar 

  40. S.A. Aksenov, Y.A. Puzino, and I.P. Mazur: in Metal, 2015, p. 6.

  41. Y. Xu, J. Zhang, Y. Bai, and M.A. Meyers: Metall. Mater. Trans. A., 2008, vol. 39A, pp. 811–43.

    Article  CAS  Google Scholar 

  42. M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1635–47.

    Article  CAS  Google Scholar 

  43. J. Li, P. Xu, Y. Tomota, and Y. Adachi: ISIJ Int., 2008, vol. 48, pp. 1008–13.

    Article  CAS  Google Scholar 

  44. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano: Mater. Sci. Eng. A, 2005, vol. 394, pp. 339–52.

    Article  Google Scholar 

  45. ISO: ISO 18265 Metallic Materials—Conversion of Hardness Values, 2003.

Download references

Acknowledgments

This research was supported under Australian Research Council’s DECRA funding scheme (Project Number DE180100440). The authors thank Drs Simon Hager, Charlie Kong, and Qiang Zhu for technical assistance and use of facilities supported by AMMRF at the Electron Microscope Unit at UNSW. Dr Liang Chen’s help with carrying out the Gleeble experiments at the University of Wollongong is gratefully acknowledged. Furthermore, the authors would like to thank Professor Paul Munroe and Arslan Khalid for their help with the TEM investigations. The steel used in this study was supplied by voestalpine Stahl Linz GmbH (Austria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Ledermueller.

Additional information

Manuscript submitted May 11, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledermueller, C., Li, H. & Primig, S. Engineering Hierarchical Microstructures via Advanced Thermo-Mechanical Processing of a Modern HSLA Steel. Metall Mater Trans A 49, 6337–6350 (2018). https://doi.org/10.1007/s11661-018-4934-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4934-3

Navigation