Skip to main content
Log in

A Thermodynamic Study on the Effect of Solute on the Nucleation Driving Force, Solid–Liquid Interfacial Energy, and Grain Refinement of Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Chemical composition is known to have significant effects on the grain refinement behavior of inoculated Al alloys during solidification. In this study, the influences of solute contents on the thermodynamic nucleation driving force and solid–liquid interfacial energy of binary Al alloys have been studied by CALPHAD method. The solute effect on the nucleation barrier and nucleation rate, thus on the grain refinement of Al alloys both with and without high potency nucleation particles, was analyzed based on the classical heterogeneous nucleation theory and free growth concept. Based on the classical heterogeneous nucleation theory, the calculation results reveal that Si has the effect of increasing the nucleation barrier of heterogeneous nucleation of grains and thus reduce the nucleation rate significantly. Alloying elements Cu and Mg have the effect of promoting heterogeneous nucleation and grain refinement. However, peritectic-forming elements, e.g., Ti, Zr, V, have only negligible effects on the nucleation barrier. For solidification of Al alloys inoculated with high potency nucleation particles, the effect of nucleation driving force caused by different solute elements on the grain size of inoculated aluminum alloys has been quantitatively studied by a grain size prediction model for isothermal melt solidification. It is revealed that the solute dependent Gibbs–Thompson coefficients of Al-Cu, Al-Mg, and Al-Si alloys have the influence of promoting the grain refinement by reducing the free growth undercooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.L. Fink, K.R. Van Horn and P.M. Budge: Trans. AIME, 1931, vol. 93, pp. 421.

    Google Scholar 

  2. Cibula A. (1949–50) J. Inst. Met. 76: 321–60.

  3. W. C. Winegard and B. Chalmers: Trans. ASM, 1954, vol. 46, pp. 1214-1224.

    Google Scholar 

  4. L. A. Tarshis, J. L. Walker and J. W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589-2597.

    Article  Google Scholar 

  5. R. D. Doherty, P. D. Cooper, M. H. Bradbury and F. J. Honey: Metall. Trans. A, 1977, vol. 8, pp. 397-402.

    Article  Google Scholar 

  6. J. A. Spittle and S. Sadli: Mater. Sci. Technol., 1995, vol. 11, pp. 533-537.

    Article  Google Scholar 

  7. W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428-437.

    Article  Google Scholar 

  8. H. Xu, L. D. Xu, S. J. Zhang and Q. Han: Scr. Mater., 2006, vol. 54, pp. 2191-2196.

    Article  Google Scholar 

  9. J. E. C. Hutt, A. K. Dahle, Y. C. Lee and D. H. StJohn: in Light Metals 1999, ed. C. Edmard Eckert, The Minerals, Metals and Materials Soc, Warrendale, 1999, pp.685-692.

    Google Scholar 

  10. P Hoefs, W Reif and W Schneider: Giesserei, 1994, vol. 81, pp. 398-406.

    Google Scholar 

  11. P.A. Tondel: Grain Refinement of Hypoeutectic Al-Si Foundry Alloys, in Department of Metallurgy, 1994, Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  12. J. E. C. Hutt, D. H. StJohn, L. Hogan and A. K. Dahle: Mater.Sci. Technol., 1999, vol. 15, pp. 495-500.

    Article  Google Scholar 

  13. Y. C. Lee, A. K. Dahle, D. H. StJohn and J. E. C. Hutt: Mater. Sci. Eng. A, 1999, vol. 259, pp. 43-52.

    Article  Google Scholar 

  14. Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian and T. Wang: Acta Mater., 2016, vol. 120, pp. 168-178.

    Article  Google Scholar 

  15. M. Johnsson and L. Backerud: Z. Metallk., 1996, vol. 87, pp. 216-220.

    Google Scholar 

  16. J. Moriceau: Review of Aluminium, 1972, vol. 12, pp. 977-988.

    Google Scholar 

  17. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229-237.

    Article  Google Scholar 

  18. M Johnsson (1993) A Critical Survey of the Grain Refining Mechanisms of Aluminium. Stockholm University, Stockholm.

    Google Scholar 

  19. M. Johnsson: Thermochim. Acta, 1995, vol. 256, pp. 107-121.

    Article  Google Scholar 

  20. J. D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  Google Scholar 

  21. M. Rappaz and P. H. Thévoz: Acta Metall., 1987, vol. 35, pp. 1487-1497.

    Article  Google Scholar 

  22. M. Easton and D. StJohn: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1613-1623.

    Article  Google Scholar 

  23. A. L. Greer, A. M. Bunn, A. Tronche, P. V. Evans and D. J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823-2835.

    Article  Google Scholar 

  24. G. Chai, L. Bäckerud and L. Arnberg: Mater. Sci. Technol., 1995, vol. 11, pp. 1099-1103.

    Article  Google Scholar 

  25. G. Chai, L. Bäckerud, T. Rølland and L. Arnberg: Metall. Mater. Trans. A, 1995, vol. 26, pp. 965-970.

    Article  Google Scholar 

  26. W. V. Youdelis: Metal Sci., 1975, vol. 9, pp. 464-466.

    Article  Google Scholar 

  27. C.-S. Yang: Role of nucleation entropy in grain refinement of aluminum alloys, in Department of Electrical and Computer Engineering, 1980, University of Windsor, Canada.

    Google Scholar 

  28. W.V. Youdelis and C.S. Yang: Aluminium, 1980, pp. 411–13.

  29. X. Yao, A. K. Dahle, C. J. Davidson and D. H. StJohn: J. Mater. Res., 2006, vol. 21, pp. 2470-2479.

    Article  Google Scholar 

  30. F. Wang, Z.-L. Liu, D. Qiu, J.A. Taylor, M. Easton and M.-X. Zhang: Metall. Mater. Trans. A, 2015, vol. 46, pp. 505-515.

    Article  Google Scholar 

  31. Q. Du, Y.J. Li: Acta Mater., 2014, vol. 71, pp. 380-389.

    Article  Google Scholar 

  32. S.-M. Liang, R. Schmid-Fetzer: Acta Mater., 2014, vol. 72, pp. 41-56.

    Article  Google Scholar 

  33. C. Zhang, Y. Du: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5766-5770.

    Article  Google Scholar 

  34. T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, L.E. Levine: Acta Mater., 2017, vol. 139, pp. 244-253.

    Article  Google Scholar 

  35. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, F. Bourlier: Acta Mater., 2014, vol. 62, pp. 129-140.

    Article  Google Scholar 

  36. H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.Q. Chen, Z.K. Liu: Calphad, 2010, vol. 34, pp. 20-25.

    Article  Google Scholar 

  37. A.A. Luo: Calphad, 2015, vol. 50, pp. 6-22.

    Article  Google Scholar 

  38. R. Schmid-Fetzer, A. Kozlov: Acta Mater., 2011, vol. 59, pp. 6133-6144.

    Article  Google Scholar 

  39. J. Eiken, M. Apel, S.-M. Liang, R. Schmid-Fetzer: Acta Mater., 2015, vol. 98, pp. 152-163.

    Article  Google Scholar 

  40. A. Malik, J. Odqvist, L. Höglund, S. Hertzman, J. Ågren: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4914-4928.

    Article  Google Scholar 

  41. Q. Chen, K. Wu, G. Sterner, P. Mason: J. Mater. Eng. Perform., 2014, vol. 23, pp. 4193-4196.

    Google Scholar 

  42. W. Cao, F. Zhang, S.-L. Chen, C. Zhang, J. Zhu, S.L. Semiatin, J.S. Tiley: J. Phase Equilib. Diff., 2014, vol. 71, pp. 380-389.

    Google Scholar 

  43. JA Dantzig, M Rappaz (2009) Solidification, 1st ed. EFPL Press, Lausanne, pp. 264-265.

    Book  Google Scholar 

  44. C. V. Thompson and F. Spaepen: Acta Metall., 1983, vol. 31, pp. 2021-2027.

    Article  Google Scholar 

  45. J. W. Christian: In The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon, Oxford, 2002, pp. 623-701.

    Book  Google Scholar 

  46. I. Ansara, A.T. Dinsdale and M.H. Rand: COST 507: Thermochemical Database for Light Metal Alloys, European Communities, Belgium, 1998.

    Google Scholar 

  47. A. T. Dinsdale: Calphad, 1991, vol. 15, pp. 317-425.

    Article  Google Scholar 

  48. J. Li, J. Wang and G. Yang: J. Cryst. Growth, 2007, vol. 309, pp. 65-69.

    Article  Google Scholar 

  49. D. Huang, S. Liu, Y. Du and B. Sundman: Calphad, 2015, vol. 51, pp. 261-271.

    Article  Google Scholar 

  50. X.-G. Lu, M. Selleby and B. Sundman: Calphad, 2005, vol. 29, pp. 68-89.

    Article  Google Scholar 

  51. L. Gránásy and M. Tegze: Mater. Sci. Forum, 1991, vol. 77, pp 243-256;

    Article  Google Scholar 

  52. S. Lippmann, I.-H. Jung, M. Paliwal and M. Rettenmayr: Philos. Mag., 2016, vol. 96, pp. 1-14.

    Article  Google Scholar 

  53. L. Gránásy, M. Tegze and A. Ludwig: Mater. Sci. Eng. A, 1991, vol. 133, pp. 577-580.

    Article  Google Scholar 

  54. https://www.thermocalc.com.

  55. https://se.mathworks.com/products/matlab.html.

  56. X. Yao, A. Dahle, C. Davidson, D. StJohn: J. Mater. Sci., 2007, vol. 42, pp. 9756-9764.

    Article  Google Scholar 

  57. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin and S. Petersen: Calphad, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  58. Y. Yang, B. Song, Z. Yang, G. Song, Z. Cai and Z. Guo: Mater., 2016, vol. 9, pp. 1001.

    Article  Google Scholar 

  59. Y. Birol: Mater. Sci. Technol., 2012, vol. 28, pp. 924-927.

    Article  Google Scholar 

  60. J. A. Spittle: Inter. Mater. Rev., 2006, vol. 51, pp. 247-269.

    Article  Google Scholar 

  61. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M. A. Easton and M.-X. Zhang: Acta Mater., 2013, vol. 61, pp. 360-370.

    Article  Google Scholar 

  62. M.M. Guzowski, G.K. Sigworth, D.A. Sentner: Metall. Mater. Trans. A, 1987, vol. 18, pp. 603-619.

    Article  Google Scholar 

  63. Z.W. Chen, M. Easton, D. StJohn: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1625-1633.

    Google Scholar 

  64. M.A. Easton, D.H. StJohn: Acta Mater., 2001, vol. 49, pp. 1867-1878.

    Article  Google Scholar 

  65. Z.W. Chen, Quasicrystal-enhanced grain refinement and solidification texture envolution in aluminium melts, ICAA15, 2016, Chongqing, China.

    Google Scholar 

  66. Z.W. Chen, Grain Refinement and Solidification Texture Evolution in Aluminium Alloys, Solidification processing 2017, 2017, Beaumont Estate, Old Windsor, UK.

    Google Scholar 

  67. G. Kurtuldu, P. Jarry, M. Rappaz: Acta Mater., 2013, vol 61, pp7098-7108.

    Article  Google Scholar 

  68. G. Kurtuldu, A. Sicco, M. Rappaz: Acta Mater., 2014, vol. 70, pp. 240-248.

    Article  Google Scholar 

  69. A. L. Greer and T. E. Quested: Philos. Mag., 2006, vol. 86, pp. 3665-3680.

    Article  Google Scholar 

  70. AL Greer, TE Quested, JE Spalding (2002) In: WA Schneider (ed) Light Metals. The Minerals, Metals and Materials Society, Warrendale, pp 687-694.

    Google Scholar 

  71. T. E. Quested and A. L. Greer: Acta Mater., 2004, vol. 52, pp. 3859-3868.

    Article  Google Scholar 

  72. T. E. Quested and A. L. Greer: Acta Mater., 2005, vol. 53, pp. 4643-4653.

    Article  Google Scholar 

  73. D. Shu, B. Sun, J. Mi and P. S. Grant: Acta Mater., 2011, vol. 59, pp. 2135-2144.

    Article  Google Scholar 

  74. Q. Du and Y. J. Li: Mater. Sci. Forum, 2014, vol. 790-791, pp. 185-190.

    Article  Google Scholar 

  75. Q. Du and Y. J. Li: IOP Conference Series: Mater. Sci. Eng., 2015, vol. 84, pp.012015.

    Article  Google Scholar 

  76. Y. Xu, Q. Du and Y. Li: Trans. Indian Inst. Met., 2015, vol. 68, pp. 1013-1016.

    Article  Google Scholar 

  77. M.A. Martorano, D.T. Aguiar and J.M.R. Arango: Metall. Mater. Trans. A, 2015, vol. 46, pp. 377-395.

    Article  Google Scholar 

  78. Y Xu, D Casari, Q Du, RH Mathiesen, L Arnberg, Y Li (2017) Acta Mater. https://doi.org/10.1016/j.actamat.2017.08.053.

    Google Scholar 

  79. M. Gündüz and J. D. Hunt: Acta Metall., 1985, vol. 33, pp. 1651-1672.

    Article  Google Scholar 

  80. D. Turnbull: J. Appl. Phys., 1950, vol. 21, pp. 1022-1028.

    Article  Google Scholar 

  81. M. E. Glicksman and C. L. Vold: Acta Metall., 1969, vol. 17, pp. 1-11.

    Article  Google Scholar 

  82. D. Camel, N. Eustathopoulos and P. Desré, Acta Metall., 1980, vol. 28, pp. 239-247.

    Article  Google Scholar 

  83. Y. Altıntas, S. Aksöz, K. Keşlioğlu and N. Maraşlı: J. Alloys Compd., 2015, vol. 649, pp. 453-460.

    Article  Google Scholar 

  84. O. Pompe and M. Rettenmayr: Pract. Metallogr., 1998, vol. 35, pp. 203-211.

    Google Scholar 

  85. O. Pompe and M. Rettenmayr: J. Cryst. Growth, 1998, vol. 192, pp. 300-306.

    Article  Google Scholar 

  86. A. Bulla, C. Carreno-Bodensiek, B. Pustal, R. Berger, A. Bührig-Polaczek and A. Ludwig: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1956-1964.

    Article  Google Scholar 

  87. H. Jones: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1563-1569.

    Article  Google Scholar 

  88. L. Wu, B. Xu, Q. Li, W. Liu and M. Li: J. Mater. Res., 2015, vol. 30, pp. 1827-1835.

    Article  Google Scholar 

Download references

Acknowledgments

This research work has been supported by a KPN Project, PRIMAL (Project number: 236675), in Norway. The financial support by The Research Council of Norway and the industrial partners, Hydro Aluminum AS, Alcoa Norway AS, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Li.

Additional information

Manuscript submitted September 9, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, D. & Li, Y. A Thermodynamic Study on the Effect of Solute on the Nucleation Driving Force, Solid–Liquid Interfacial Energy, and Grain Refinement of Al Alloys. Metall Mater Trans A 49, 1770–1781 (2018). https://doi.org/10.1007/s11661-018-4542-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4542-2