Skip to main content
Log in

Embrittlement of Intercritically Reheated Coarse Grain Heat-Affected Zone of ASTM4130 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this investigation, a thermal welding simulation technique was used to investigate the microstructures and mechanical properties of the intercritically reheated coarse grain heat-affected zone (IR CGHAZ) of ASTM4130 steel. The effect of post weld heat treatment (PWHT) on the toughness of IR CGHAZ was also analyzed. The toughness of IR CGHAZ was measured by means of Charpy impact, and it is found that IR CGHAZ has the lowest toughness which is much lower than that of the base metal regardless of whether PWHT is applied or not. The as-welded IR CGHAZ is mainly composed of ferrite, martensite, and many blocky M–A constituents distributing along grain boundaries and subgrain boundaries in a near-connected network. Also, the prior austenite grains are still as coarse as those in the coarse grain heat-affected zone (CGHAZ). The presence of the blocky M–A constituents and the coarsened austenite grains result in the toughness deterioration of the as-welded IR CGHAZ. Most of the blocky M–A constituents are decomposed to granular bainite due to the effect of the PWHT. However, PWHT cannot refine the prior austenite grains. Thus, the low toughness of IR CGHAZ after PWHT can be attributed to two factors, i.e., the coarsened austenite grains, and the presence of the remaining M–A constituents and granular bainite, which are located at grain boundaries and subgrain boundaries in a near-connected network. The absorbed energy of the IR CGHAZ was increased by about 3.75 times, which means that the PWHT can effectively improve the toughness but it cannot be recovered to the level of base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.R. Still and V. Blackwood: Weld. J., 1997, vol. 76(7), pp. 37–42.

    Google Scholar 

  2. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du: Mater. Sci. Technol., 2011, vol. 27, pp. 1657–63.

    Google Scholar 

  3. E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan, and J.M. Orain: Mater. Sci. Eng. A, 2004, vol. 385, pp. 352–58.

    Article  Google Scholar 

  4. C.W. Li, Y. Wang, T. Han, B. Han, and L.Y. Li: J. Mater. Sci., 2011, vol. 46, pp. 727–33.

    Article  Google Scholar 

  5. L.Y. Li, Y. Wang, T. Han, and C.W. Li: Sci. China-Phys. Mech. Astron., 2011, vol. 54(8), pp. 1447-54.

    Article  Google Scholar 

  6. C.L. Davis and J.E. King: Metall. Mater. Trans. A., 1994, vol. 25(3), pp. 563–73.

    Article  Google Scholar 

  7. J.I. Jang, J.B. Ju, B.W. Lee, D. Kwon, and W.S. Kim: Mater. Sci. Eng. A, 2003, vol. 340, pp. 68–79.

    Article  Google Scholar 

  8. C.W. Li, Y. Wang and Y.H. Chen: J. Mater. Sci., 2011, vol. 46, pp. 6424-31.

    Article  Google Scholar 

  9. H. Qiu, H. Mori, M. Enoki, and T. Kishi: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2785-91.

    Article  Google Scholar 

  10. K. Ohya, J. Kim, K. Yokoyama, and M. Nagumo: Metall. Mater. Trans. A., 1996, vol. 27, pp. 2574-82.

    Article  Google Scholar 

  11. X. Wang, J.W. Chang, G.Z. Huang, and Y.L. Zhang: Trans. China Weld. Inst., 2008, vol. 29(10), pp. 29-32.

    Google Scholar 

  12. [V.G. Haugen, B.R.S. Rogne, O.M. Akselsen, C. Thaulow, and E. Østby: Mater. Design, 2014, vol. 59, pp. 135-40.

    Article  Google Scholar 

  13. Y. You, C.J. Shang, L. Chen, and S. Sundaresa: Mater. Design, 2013, vol. 43, pp. 485-91.

    Article  Google Scholar 

  14. F. Matsuda, K. Ikeuchi, Y. Fukada, Y. Horii, H. Okada, T. Shiwaku,C. Shiga, S. Suzuki: Trans. JWRI, 1995, vol. 24(1), pp. 1–24.

    Google Scholar 

  15. S.S. D’yachenko: Met. Sci. Heat Treat., 2000, vol. 42, pp. 122–7.

  16. S.S. Yugai, L.M. Kleiner, A.A. Shatsov and N.N. Mitrokhovich: Met. Sci. Heat Treat., 2004, vol. 46, pp. 539-44.

    Article  Google Scholar 

  17. S. Lee, B.C. Kim, D. Kwon: Metall. Mater. Trans. A, 1992, vol. 23, pp. 2803-16.

    Article  Google Scholar 

  18. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22, pp. 139-49.

    Article  Google Scholar 

  19. X.D. Li, Y.R. Fan, X.P. Mao, S.V. Subramanian and C.J. Shang: Mater Des, 2015, vol. 67, pp. 457-463.

    Article  Google Scholar 

  20. X.D. Li, C.J. Shang, X.P. Ma, B. Gault, S.V. Subramanian, J.B. Sun and R.D.K. Misra: Scripta Mater., 2017, vol. 139, pp. 67-70.

    Article  Google Scholar 

  21. A. Lambert, J. Drillet, A.F. Gourgues, T. Sturel, A. Pineau: Sci. Technol. Weld. Joining, 2000, vol. 5, pp. 168–73.

    Article  Google Scholar 

  22. ASM Handbook Volume 4: Heat Treating, ASM International®, p. 105.

  23. ASM Handbook Volume 6: Welding, Brazing and Soldering, ASM International®, p. 1655.

  24. Y.H. Li and F.H. Bao: Trans. China Weld. Inst., 1987, vol. 8(4), pp. 181-7.

    Google Scholar 

  25. Y.P. Kang: Metallic Solid-state Phase Transformation and Application, Chemical Industry Press, Beijing, 2007, pp. 27-30.

    Google Scholar 

  26. E. Bayraktar and D Kaplan: J. Mater. Process. Technol., 2004, vol. 153-154, pp. 87-92.

    Article  Google Scholar 

  27. C.L. Davis and J.E. King: Metall. Mater. Trans. A, 1996, vol. 27, pp. 3019-29.

    Article  Google Scholar 

  28. S. Moeinifar, A.H. Kokabi, and H.R. Madaah Hosseini: J. Mater. Process. Technol., 2011, vol. 211, pp. 368-75.

    Article  Google Scholar 

  29. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Metall. Mater. Trans. A., 2014, vol. 45, pp. 384-94.

    Article  Google Scholar 

  30. C.L. Davis, and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8-15.

    Article  Google Scholar 

  31. J.S. Liao, K. Ikeuchi, and F. Matsuda: Nucl. Eng. Des., 1998, vol. 183, pp. 9-20.

    Article  Google Scholar 

  32. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337-48.

    Article  Google Scholar 

  33. H.L. Gao, Y.H. Dong and Y.R. Feng: J. Mech. Eng., 2001, vol. 37(3), pp. 14-19.

    Article  Google Scholar 

  34. X. Wang, J.W. Chang, F.Y. Chen and M.L. Qiu: Trans. China Weld. Inst., 2008, vol. 29(3), pp. 9-12.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (ZR2013EEQ027), Fundamental Research Funds for the Central Universities of China (14CX02066A), and the Independent Innovation Projects of Shandong Province (2012CX80101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Li.

Additional information

Manuscript submitted February 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Han, T. & Han, B. Embrittlement of Intercritically Reheated Coarse Grain Heat-Affected Zone of ASTM4130 Steel. Metall Mater Trans A 49, 1254–1263 (2018). https://doi.org/10.1007/s11661-018-4480-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4480-z

Navigation