Skip to main content
Log in

A Modified HR3C Austenitic Heat-Resistant Steel for Ultra-supercritical Power Plants Applications Beyond 650 °C

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A modified HR3C austenitic steel has been designed by optimizing the chemical composition. Compared with a commercial HR3C alloy, the modified steel has comparable oxidation resistance, yield strength, and plasticity, but higher creep rupture strength and impact toughness after long-term thermal exposure. The results suggest that the modified alloy is a promising candidate for the applications of ultra-supercritical power plants operating beyond 650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. R. Viswanathan, R. Purgert, and P. Rawls: Adv. Mater. Process, 2008, vol. 8, pp. 47-49.

    Google Scholar 

  2. M. Igarashi: in Creep Properties of Heat Resistant Steels and Superalloys, K Yagi, G Merckling, T-U Kern, and H Irie, eds., Springer-Verlag, Berlin, 2004, pp. 292-96.

    Chapter  Google Scholar 

  3. N. Kanno, K. Yoshimura, and N. Takata: Mater. Sci. Eng. A, 2016, vol. 662, pp. 551-63.

    Article  Google Scholar 

  4. Y. Sawaragi, H. Teranishi, and H. Makiura: Sumitomo Metals, 1985, vol. 37, pp. 166-79.

    Google Scholar 

  5. A. Iseda, H. Okada, and H. Semba: Energy Mater., 2007, vol. 2, pp. 199-06.

    Article  Google Scholar 

  6. B.C. Peng, H.X. Zhang, and J. Hong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3625-29.

    Article  Google Scholar 

  7. D.J. Powell, R. Pilkington, and D.A. Miller: Acta Metall., 1988, vol. 36, pp. 713-24.

    Article  Google Scholar 

  8. G. Golański, C. Kolan, and A. Zieliński: Arch Mater. Sci. Eng., 2016, vol. 81, pp. 62-67.

    Article  Google Scholar 

  9. J.B. Yan, Y.F. Gu, and F. Sun: Mater. Sci. Eng. A, 2016, vol. 675, pp.289-98.

    Article  Google Scholar 

  10. W. Wang, Z. Wang, and W. Li: Mater. High. Temp., 2016, vol. 33, pp. 276-82.

    Article  Google Scholar 

  11. Z. Zhang, Z.F. Hu, and H.Y. Tu: Mater. Sci. Eng. A, 2017, vol. 681, pp.74-84.

    Article  Google Scholar 

  12. N.D. Evans, P.J. Maziasz, R.W. Swindeman, and G.D. Smith: Scripta Mater., 2004, vol. 51, pp. 503-07.

    Article  Google Scholar 

  13. H. Wang, C.Q. Cheng, and J. Zhao: Acta Metal. Sin., 2015, vol. 51, pp. 920-24.

    Google Scholar 

  14. I.G. Wright, A.S. Sabau, and R.B. Dooley: Mater. Sci. Forum, 2008, vol. 595, pp. 387-95.

    Article  Google Scholar 

  15. Y. Yuan, Y.F. Gu, and C.Y. Cui: J. Mater. Res., 2011, vol. 26, pp. 2833-37.

    Article  Google Scholar 

Download references

The authors gratefully acknowledge the financial support from the China Huaneng Group (ZD-15-HJK02), and thank Professor C.Y. CUI (The Institute of Metal Research, the Chinese Academy of Sciences) for the fabrication of alloys, and Dr. J. LI (The Instrumental Analysis Center of Xi’an Jiaotong University) for assistance in conducting the TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yuan.

Additional information

Manuscript submitted August 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C.Z., Yuan, Y., Zhang, P. et al. A Modified HR3C Austenitic Heat-Resistant Steel for Ultra-supercritical Power Plants Applications Beyond 650 °C. Metall Mater Trans A 49, 434–438 (2018). https://doi.org/10.1007/s11661-017-4424-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4424-z

Navigation